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Abstract We develop a systematic toolbox for analyzing the adaptive dy-
namics of multidimensional traits in physiologically structured population
models with point equilibria (sensu Diekmann et al. 2003).

Firstly, we show how the canonical equation of adaptive dynamics (Dieck-
mann and Law 1996), an approximation for the rate of evolutionary change
in characters under directional selection, can be extended so as to apply
to general physiologically structured population models with multiple birth
states.

Secondly, we show that the invasion fitness function (up to and including
second order terms, in the distances of the trait vectors to the singularity)
for a community of N coexisting types near an evolutionarily singular point
has a rational form, which is model-independent in the following sense: the
form depends on the strategies of the residents and the invader, and on the
second order partial derivatives of the one-resident fitness function at the
singular point. This normal form holds for Lotka-Volterra models as well as
for physiologically structured population models with multiple birth states,
in discrete as well as continuous time and can thus be considered universal
for the evolutionary dynamics in the neighbourhood of singular points. Only
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H-1117 Budapest, Hungary

J.A.J. Metz 2nd affiliation
Adaptive Dynamics Network, International Institute for Applied Systems Analysis,
A-2361 Laxenburg, Austria



2

in the case of one-dimensional trait spaces or when N = 1 can the normal
form be reduced to a Taylor polynomial.

Lastly we show, in the form of a stylized recipe, how these results can be
combined into a systematic approach for the analysis of the (large) class of
evolutionary models that satisfy the above restrictions.

Keywords adaptive dynamics · physiologically structured populations ·
multivariate evolutionarily singular strategies · multitype branching
processes · evolutionary modelling

1 Introduction

This paper is concerned with the abstract geometry underlying the process
of repeated invasions by novel mutants. Mutation limited near-continuous
evolution will be our frame of reference, as we follow the so-called adaptive
dynamics approach. Adaptive dynamics studies which rare mutants can es-
tablish themselves in an environment inhabited by a large equilibrium pop-
ulation of residents that they closely resemble, which invasions by similar
mutants will lead to the demise of the original residents, and what the evo-
lutionary outcome will be of a series of such substitution events. The tricks
and tools of this trade are introduced in the following section.

The assumed magnitude of the resident population makes its dynamics
deterministic, whereas the rarity of the invading mutant introduces a strong
stochastic effect. This complication means that a positive average growth rate
is a necessity, but no guarantee for a mutant’s invasion success. To ask for the
probability of such success is basically to ask what chance a given mutant has
of being the ancestor of an unbroken line of descendants. This is analogous to
the ‘surname’ problem that led to the theory of branching processes, where
the quantity we called for is termed the establishment probability of the given
mutant (e.g. Haccou et al. 2005).

The last major consideration we have in the setup of this enquiry is
that we look for general geometric properties and not artifacts generated by
specific models. Therefore we must consider as wide a class of models as we
can technically handle. To that end, we derive our results within the context
of general physiologically structured populations. This class of models is the
ultimate generalization of resource competition models, allowing populations
structured e.g. by size, and multiple birth states (think sexes, morphs, or
size at birth). The third part of this introduction (1.2) points out the main
assumptions and quantities pertaining to such models.

Gathering together the results of perturbation calculations, we are able
to extend the so-called canonical equation derived by Dieckmann and Law
(1996) to general physiologically structured populations. It is the adaptive
dynamics tool, describing the rate of trait change in the case of directional
selection. However, the canonical equation is an approximation that loses its
validity in the close proximity of its equilibrium points. At such points, called
evolutionarily singular points, a more precise analysis is required.

In this paper we also show that with regard to the invasion fitness function
near evolutionarily singular points, all possible models are locally equivalent
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to Lotka-Volterra models (3.4, Proposition 3). Therefore the fitness function
of these well-known and mathematically relatively tractable models provides
a general normal form. Thus the derivation of this property is a step towards
classifying the local geometrical properties of invasion functions. Geritz et al.
(1998) showed that if the trait under evolutionary control is scalar, a full
classification of nonexceptional cases consists of eight possibilities. When
traits are multidimensional (as in this paper), it is unknown how many classes
are needed to cover all nonexceptional cases nor what they would look like, let
alone that there is an understanding of the bifurcations between those classes.
F.J.A. Jacobs is engaged (together with one of the authors) in analyzing the
latter for Lotka-Volterra models with scalar traits; this paper shows that a
fair part of their results apply to all models with one-dimensional strategies.

1.1 Adaptive dynamics

Adaptive dynamics is concerned with evolutionary outcomes of community-
dynamical processes when reproduction is nearly faithful (Metz et al. 1996).
The main assumptions are rarity of mutations (i.e., the ecological and evo-
lutionary timescales are separated, and hence the community dynamics will
settle on an attractor between mutation events), smallness of mutational
steps (allowing sensible topological and geometrical inferences) and the ini-
tial rareness of mutants (implying a well-mixed resident population of large
size).

A key insight of structured population models is given pride of place
in adaptive dynamics: the separation of individual and environment, both
influencing each other in a feedback loop (Metz and Diekmann 1986). The
idea is that individuals influence the environment in an additive manner.
Given an environment, individuals are independent — any two particular
individuals being exceedingly rare as a proportion of the total population,
their mutual influence is effectively zero. This decoupling makes the equations
linear when the environmental condition is given as a function of time.

The starting point of adaptive dynamics is the invasion fitness function
(Metz et al. 1992). By definition this is the long-term average per capita
growth rate of a rare type (the invader) in an equilibrium community of a
given set of types (the residents). Thus a resident type cast in the role of
invader always has a zero invasion fitness, since it will on average neither grow
nor diminish in abundance. One also sees that a negative fitness for a given
type implies the impossibility for such an invader to gain a foothold in the
population, whereas a positive fitness usually means a positive probability
of establishment. But as this concerns a stochastic process with an initially
very small amount of invaders, even a positive average growth rate will not
prevent extinction in a fair amount of cases. However, as we consider gradual,
mutation-driven evolution, the relevant invaders are the mutants: new types
that differ but slightly from one of the residents. When a mutant has a
positive invasion fitness, but due to stochasticity its attempt at establishment
fails, this is not the end; evolution can bide its time and a later occurring
similar mutation may get established due to other chance fluctuations.
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Reviewing the technical setup of the framework, we start by considering
the parameters under evolutionary control. We refer to this set of parameters
as a strategy (which gives it a life history flavour), a trait value or trait vector
(which sets the mind to a more technical, algebraic frame), a point in the
strategy space (which hints at a graphical representation, or a geometrical
argument), or simply the type of the individual. We call the set of all possible
traits the trait space and denote it by X.

The invasion fitness function is also known as the s-function, to underline
its heritage as a conceptual extension of the selection coefficient of popula-
tion genetics. The s-function for a monomorphic community, denoted by
sX(Y ), describes the invasion fitness of a mutant with trait value Y in
an environment set by a single resident of type X. The s-function for a
polymorphic community, similarly denoted by sX(Y ), gives the invasion fit-
ness of a Y -type mutant in an environment set by a community of N types
{X1,X2, . . . ,XN} =: X.

That the community can (locally) be identified with the strategies present,
comes from the convenient assumption of existence and (local) uniqueness of
an attractor for the population dynamics of the community, plus the paucity
and small effect of mutations.

The s-function generates further functions of central concern, namely the
invasion gradients, which are the transposes of the derivatives of the fitness

in the mutant direction at the trait value of a resident:
(

∂sX(Y )
∂Y Y =X

)T

for a

monomorphic world,
(

∂sX(Y )
∂Y Y =Xi

)T

for some i in the polymorphic case. The
trait values where these invasion gradients are zero are called evolutionarily
singular strategies. The study of evolutionary dynamics can thereby be split
into two main parts. First, away from the zeros of the invasion gradient and
under the restriction of well-behaved population dynamics, it can be shown
that “invasion implies substitution” (Dercole 2002; Dercole and Rinaldi in
press). What well-behaved entails, is considered by Geritz et al. (2002) and
Geritz (2005), and substitution means that the mutant drives its ancestral
resident to extinction if it succeeds in establishing itself. Hence the apparition
of a new type, the mutant, does not usually lead to increased diversity —
on the contrary, if there are several types coexisting in the resident commu-
nity, on rare occasions the appearance of a mutant may lead to the demise
of not only the resident that spawned it but also of other resident types,
thereby actually reducing the diversity of resident types. Close to a singu-
lar strategy however, other phenomena come into play. Singularities fall into
several categories, one possibility being the classical ESS, known i.a. from
evolutionary game theory. What makes adaptive dynamics an interesting
evolutionary framework, is the existence of other, naturally occurring, types
of singularities. Foremost among them is the branching point, a singularity
that is attracting (for the monomorphic dynamics) but in the proximity of
which selection is disruptive. Here selection acts such that a newly estab-
lished mutant does not drive its progenitor to kingdom come. Subsequent
mutants do however wipe out their ancestors, so that after a few mutation
events two distinct resident populations will sit on opposite sides of the sin-
gularity. Over evolutionary time, these populations form two ‘branches’ of
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co-viable types, that evolve away from the singularity. Such a splitting of
genetic lines through an intrinsic process has an obvious appeal as a model
for (the initiation of) speciation.

Research into the mathematical properties of adaptive dynamics models
has led to several insights. Foremost there is the canonical equation as formu-
lated by Dieckmann and Law (1996), which predicts the speed of evolution
as a function of the underlying individual processes. That formulation so
far allows only community dynamics modelled by ODEs. The equation ba-
sically predicts evolution under directional selection, at some distance from
singularities. In this paper we first extend the applicability of the canoni-
cal equation to physiologically structured populations, and later look what
happens at those points where the approximation fails to hold true. To this
end we devise an expansion near the singular points of the fitness function.
The formalism in which we do the calculations is set down in the following
subsection.

1.2 Physiologically structured population models

As described for example by Diekmann et al. (2003), general physiologically
structured models assume few restrictions on population dynamical mech-
anisms other than (local) well-mixedness. We restrict our attention to the
special case of structured populations with point equilibria in the resident
population dynamics. In that case, the following definitions shape the mod-
elling framework:

– b is the column vector of birth rates, with as components the steady
rates at which individuals are born with state-at-birth specified by the
component number.

– I is a vector describing the environmental conditions as far as they play
a role in the (direct or indirect) interactions between the individuals. The
defining requirement is that individuals are independent of one another
when I is given. In this paper, we restrict our attention to community
dynamics with point equilibria, so I is time-independent.

– L(X, I) is the next-generation matrix. The matrix component L(X, I)lm is
the expected number of offspring with birth state l born over the lifetime
of an individual with trait vector X that was born with state m, given
steady environmental conditions as specified by I.

– G(X, I) is the feedback matrix. The matrix component G(X, I)tl is the
lifetime contribution to the tth component of I by an individual born
in state l with trait vector X, given steady environmental conditions as
specified by I.

The terminology above implies that we are only considering a finite number
of possible birth states and of environmental dimensions, although there are
no conceptual reasons for this restriction. For example, single celled organ-
isms will inherit their size from their mother (about half her size at the time
of division), which implies a continuous range of sizes for the newborns. Simi-
larly, sexual reproduction leads to infinite dimensional environments usually,
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because each trait can potentially partner with infinitely many other traits
to make up a diploid individual.

We restrict ourselves to finite dimensional environments and birth flows,
to make sure that our formal calculations make mathematical sense; there
is no a priori reason why a generalization would not be possible or desirable
(see e.g. Diekmann and Gyllenberg (submitted) for modelling work without
these limitations).

For a community under the above conditions with N types present, equi-
librium means that each generation precisely replaces the previous genera-
tion, and that the feedback is such that it exactly re-creates the environment
as experienced by the organisms:

bi = L(Xi, I) bi (∀i ∈ {1, 2, . . . , N})

I =
N∑

j=1

G(Xj , I) bj

(1)

It is clear that the first equation is equivalent to stating that at equilibrium,
a population is either extinct or the expected lifetime offspring production
R0 of its individuals is one, since R0 is the dominant eigenvalue of L. The
second equation states nothing more than that all individuals together must
contribute to the environment in such a way that it remains unchanged.
Diekmann et al. (2003) have shown that the equilibrium conditions of most
population models in the literature may be cast in the above form (1), a
claim hinging on the considerations below about uncoupling the feedback
loop that connects populations and individuals. It will however often be an
arduous task to rewrite a given model representation into this form while the
individual-based recipe for arriving at Equation (1) is easy.

It should be stressed that Equation (1) is an equilibrium equation, writ-
ten in terms of the next-generation operator L together with the feedback
operator G. Discrete time non-overlapping generations models are typically
specified by giving matrix valued functions L and G for all possible environ-
mental conditions, including non-equilibrium population states. Then Equa-
tion (1) is immediately found as the corresponding equilibrium condition.
For continuous time models, Diekmann et al. (in press) have shown how an
extension into nonequilibrium conditions can be done through reformulating
the dynamics using an integral kernel formulation, which can be a challenging
task in concrete cases.

From a biological point of view, the environment I is more readily ob-
served as the effect of the community on the world (the environmental output
Iout) than vice versa (the environmental input Iin), as the rest of this sub-
section will elaborate.

The idea behind physiologically structured population models as put for-
ward by Diekmann et al. (2001, 2003), is to characterize the populations
by their birth flow vectors; that is, we register the flux of births bi of the
ith population differentiated according to the possible birth states. The per
capita lifetime offspring production depends on the condition of the world,
Iin , and on the type Xi of the individual, so that in the special case where
the world is constant, a given cohort bi produces L(Xi, Iin)bi offspring over
its lifetime, for some matrix function L.
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The output Iout registers the total influence the individuals have on the
environment. This clearly depends on the state of the community; for exam-
ple, an individual in a virgin (i.e., devoid of competitors) environment may
consume more and have far more offspring than an identically born individ-
ual that is put in an overcrowded world. It is also clear that this output
should scale with the number of individuals there are, as it is an instanta-
neous output: two individuals will have exactly twice the influence of a single
individual if they are kept under exactly the same conditions. Furthermore,
this influence depends on the type of the individuals concerned. Therefore
we postulate that the output must depend on the input in the following way
that accounts for the scaling argument: Iout =

∑
j G(Xj , Iin)bj .

All other things being equal, the state of the world must be the result
of the compounded influence of all the individuals. Thus the condition Iin
depends only on the output Iout of the population, through some conversion
function F that accounts for the effect of the environmental dynamics. Hence
the feedback loop of the community’s influence on itself is closed.

All told, we have the following system to solve, where the last equation
is the equilibrium condition:

Iout =
∑

j

G(Xj , Iin)bj Iin = F(Iout) ∀i : bi = L(Xi, Iin)bi

Here we see that we can eliminate one equation and have only Iout and b as
unknowns, since

Iout =
∑

j

G̃(Xj , Iout)bj ∀i : bi = L̃(Xi, Iout)bi

where the matrix functions G̃ and L̃ are the compositions G ◦ (id × F) and
L◦ (id×F) respectively. We will denote Iout simply as I and drop the tilde in
the notation of G and L, which gives us the equations introduced at the be-
ginning of this subsection. It is clear that an arbitrarily complicated amount
of biological detail can be put in the functions G and L, justifying the claim
that this is a very flexible modelling framework. We do however assume a
certain level of smoothness (namely that G and L are thrice continuously
Fréchet differentiable functions), to guarantee the existence of chain rules
and to justify our expansion arguments by the implicit function theorem.

1.3 Notations

Throughout this paper, we will deal with communities where a finite number
of types are present. These are numbered from 1 toN and denoted by their re-
spective trait vectors X1 up to XN . The community as a whole is denoted by
X and it is interpreted either as a set of trait vectors X := {X1, X2, . . . , XN},
or as an N -column matrix X := [X1 X2 . . . XN ], depending on the context.
As a convention,

– the indices i, j, k will exclusively refer to resident types (which were said
to range from 1 to N),
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– the indices l,m, n are reserved for denoting birth states in a structured
population model, and if only a finite number of different birth states
exist they are numbered from 1 to d,

– the indices a, b will only be used to indicate the scalar trait components
that make up a trait vector, which we take to be z-dimensional,

– the indices s, t always relate to environmental components, where the
dimension of the environment I is r (cf. Subsection 1.2).

Thanks to these rules, a summation index implicitly has a range attached to
it, as for example

∑
i can be unambiguously read as

∑N
i=1. Our aim however

was not a slight notational simplification, but to make calculations easier to
verify.

As far as possible, we adhere to the convention (e.g. Beccari 1997) that
matrices and tensors are denoted by an upright, sans serif capital like M,
vectors with a bold Italic letter like b or V , and scalars with a Greek or
Roman letter like λ, Π, t or R0. A consequence of this convention is that for
example the lth component of the birth flow vector b must be written as bl,
and one cannot mistake the matrix C11 for the first diagonal element C11 of
another matrix C.

To help the reader, brackets around matrix-valued expressions have been
made square, where vector- or scalar-valued expressions are signalled by
round brackets; thus matrix components are indicated as e.g. [C11]ab.

Furthermore, column vectors with all entries equal to 1 (resp. zero) will be
denoted by 1 (resp. 0 ), where the dimension will be clear from the context.
Similarly, the zero matrix is denoted by 0 and the identity matrix by id.

Please see Subsection 3.1 for additional notations restricted to Section 3.

1.4 Assumptions

Here we present an overview of the assumptions scattered throughout this
paper. The impact of some of these conditions cannot be meaningfully dis-
cussed at this point, as the relevant concepts have not been presented yet.
Hence we refer the reader to the subsections where the assumptions are stated
as preliminary to specific calculations. One notes that most are stated in the
Introduction, and hence are necessarily active from there onwards until the
end. Assumptions made in one of Sections 2 or 3 do not apply to the other
section, but are necessarily active in Section 4.

First and foremost we abide by the core premises of the adaptive dy-
namics framework: individuals have heritable traits that influence their life
histories, the resident community is large and well-mixed while both mutants
and mutation events are rare (1.1), plus the additional assumption that the
community has a global point attractor, or alternatively that it has locally
unique point attractors while mutational steps are sufficiently small so as to
guarantee that after a succesful invasion the community moves to a natural
continuation of its earlier attractor (1.1, 1.2, 2.2). The basic process from
which the deliberations start is derived in the following manner, as a limit
of a fully individual-based community dynamics. Introducing a parameter Ω
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called system size that scales inversely with the effects of interactions be-
tween the individuals in the community, the number of individuals must be
about proportional to Ω. The limit to consider is that where Ω becomes large
while the mutation probability per birth event gets so small that a mutant
strategy reaching establishment becomes a rare event on the community dy-
namical timescale. To compensate for this rarity, time is rescaled so that the
number of different established mutants per unit of time stays O(1); this new
timescale is called the evolutionary timescale. (With increasing Ω, the rescal-
ing must be such that the rate of mutations reaching establishment decays
sufficiently slowly to guarantee that the rescaled asymptotic rate at which
the community goes extinct through demographic fluctuations, decreases to
zero.) On the ecological timescale, the community relaxes to its deterministic
attractor before the next mutant comes along. This attractor can be calcu-
lated from the equilibrium equations (1) scaled by 1/Ω, i.e., when b is read
as a density per time and I as a density. The described combination of a
limit and a rescaling allows a reduced process description, where at almost
all times there is but a small set X of trait values around, in densities given
by the corresponding deterministic community attractor. Such a process has
been variously referred to as adaptive dynamics (Metz et al. 1996), oligo-
morphic dynamics (Dieckmann and Law 1996) and trait substitution process
(Geritz et al. 1998). The validity of the limit has been proven for some specific
Markovian models by Champagnat (2006). For general physiologically struc-
tured populations there is as yet no proof for the step from the underlying
stochastic models to the deterministic models considered by Diekmann et al.
(2001, 2003). In our paper, we take the existence of the limit on faith, and
from this vantage point study situations where mutational steps are small
and all types present in the population are very similar. All order statements
refer to the scale of the differences in the traits under consideration, between
mutant and ancestor in Section 2 and mutant and residents in Section 3.
In Section 4 however we also consider situations with similar residents and
mutational steps that are of an even smaller order.

In addition, we impose regularity conditions that are inherent to our
modelling approach: a thrice continuously differentiable dependence of the
demographic parameters on trait values and environment (1.2, 3.3), offspring
distributions that decay sufficiently quickly to have uniformly bounded third
moments (which amounts to the thrice differentiability of the generating
function) (2.5), and no birth states with zero birth flow for the sole singular
resident (3.4). Finiteness of the number of birth states (1.2) can also be put
into this class of requirement, although it is fundamental to our approach
only in the sense that it is required by our specific machinery (i.e. vectors
and matrices, instead of distributions and operators).

Lastly, we inherit assumptions made by Dieckmann and Law (1996), as
one of our aims is to see how the canonical equation changes when their
premise of ODE population regulation is dropped: unbiased mutations (2.6),
and a stochastic trait substitution process that becomes deterministic when
the mutational steps become small while time is rescaled such that on the
new scale the rate of trait change stays O(1) (2.3).
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2 The canonical equation of directional adaptive dynamics

2.1 Unstructured populations

The canonical equation of adaptive dynamics, first derived by Dieckmann
and Law (1996) for ODE population models, is a first order approximation
for the average speed of evolution. The rate of trait change per time of the
ith type in a community is

dXi

dt
≈ 1

2
n̂i µi(Xi)M(Xi)

∂sX(Y )
∂Y

T

Y =Xi

(2)

where the mutational covariance matrix M at trait value Xi is defined as
M(Xi) :=

∫
V V TM(V ,Xi) dV , an expression that depends on the multi-

variate distribution of mutational steps M(V ,Xi) from Xi to Xi + V . The
speed of evolution is thus seen to be proportional to the mutation probability
per birth event µi, the equilibrium population size n̂i in the given N -resident

community X, and the fitness gradient
(

∂sX(Y )
∂Y

Y =Xi

)T

.

At the singular strategies the fitness gradient becomes zero. Hence, close
to the singular strategies the first and second order terms are of similar
size, and the approximation embodied by the canonical equation looses its
descriptive power. Champagnat (2003, 2004) has proven that under some
additional technical conditions, trait substitution processes that are based
on population models with ODE deterministic skeletons sporting globally
attracting point equilibria do converge weakly to the deterministic process
captured by the canonical equation. His proof applies without change to the
general case except for some small changes in the formulas, to be provided
in the next subsections. Simulations suggest that away from the singular
points, the pictures derived by solving the canonical equation capture the
temporal development of the trait composition of the underlying individual-
based process rather well (e.g. Fig. 2 in Dieckmann and Law (1996); Fig. 10
in Metz et al. (1996)) in a fair-sized parameter volume close to the origin
of the three-dimensional parameter space spanned by mutational step size,
inverse system size and mutation probability per birth event.

2.2 Aims of this section

Where Dieckmann and Law (1996) formulated the canonical equation for
ODE models, we aim here to relax that limitation by considering the far
wider class of physiologically structured population models, and thus to re-
cover a generalized form of Equation (2). As the canonical equation (in both
formulations) fails to capture the trait substitution behaviour of systems
near evolutionary singularities, a separate part of this paper will deal with
singularities (Section 3).

Our goal is to find out how a community (or more precisely, a set of trait
values) will evolve, and at what rate. The basic scenario is the following:
we start by considering a coalition of N different trait values that are the
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strategies of residents, which form a community that is at equilibrium. This
fixed point attractor is presumed to exist for the community as a whole, as
a unique set of positive equilibrium densities for all N trait values. When
a mutant with positive invasion fitness appears, several things may happen.
Usually, it will fail to get established in the community due to stochasticity,
and will disappear. However, if it does get established, it will remove its
parent from the population through competitive exclusion. Then the N − 1
remaining residents plus the invader will have their densities equilibrate at
new values, assumed to be positive and unique to the given set ofN strategies.
The first situation means that the community returns to its earlier state,
the second that a small evolutionary step has taken place. Mutation events
are by assumption so rare, that the community has relaxed to its attractor
before the next mutation event takes place. As the cycle of mutation followed
by possible invasion and equilibration can occur over and over again, this
invasion/replacement dynamics provides a scenario where evolution proceeds
through a great number of small trait changes.

The above setting assumes that the mutating trait value is not (close to)
singular nor close to the boundary of the coexistence region, and that the
population dynamics is sufficiently well-behaved, so that the dictum “inva-
sion implies substitution” holds (Geritz et al. 2002; Dercole 2002; Meszéna
et al. 2005; Geritz 2005; Dercole and Rinaldi in press). We stress here that
we restrict ourselves to point attractors, as it is not clear yet to which extent
the rule holds for more complicated attractors than fixed points and limit
cycles. Thus special situations, where either the mutant coexists indefinitely
with its parent or where it drives several residents to extinction, are explicitly
excluded from this paper’s analysis. Also, in higher dimensional trait spaces
there are unavoidable exceptions to the dictum: several selectively neutral
mutants (in directions orthogonal to the invasion gradient) may briefly es-
tablish a foothold, until the next succesful mutant in the direction of the
invasion gradient kills off its progenitor along with those recent invaders.
These problematic scenarios however are essentially negligible, as they rep-
resent a fraction of the total invasion events that vanishes in the limit of
infinitesimal mutation steps.

From Geritz et al. (2002), Meszéna et al. (2005) and Dercole and Rinaldi
(in press) one learns that the assumption of uniqueness of the community
fixed point is merely made for mathematical convenience, as the community
attractors before and after succesful invasions are arbitrarily close for suffi-
ciently small mutation steps. Thus the invader inherits the attractor of the
resident it replaces, as the new attractor lies on the continuation of the older.
The existence and (local) uniqueness is therefore guaranteed under the mild
restrictions put forward by Geritz et al. (2002), which essentially are absence
of population dynamical bifurcations and sufficient smoothness of the model
ingredients. If several fixed point attractors exist for a given set of trait vec-
tors, they necessarily lie on distinct branches of solutions to the population
dynamical equilibrium equations. Distinguishing such multiple attractors is
therefore an administrative rather than mathematical problem, as the initial
conditions (specifically, the earlier community attractors) determine in which
basin of attraction the community finds itself.
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The appearance of mutants, governed by the probability per birth event
of a mutation and the distribution M of mutational steps, and their eventual
success or failure at establishment is inherently stochastic. This means that
trait values are stochastic and time-dependent variables that we can charac-
terize by the probability of the community being in a given state at a given
time. The essential information to determine this probability is the rate at
which the community’s state is expected to change from one state to another,
an issue we will turn our attention to over the following paragraphs.

2.3 The deterministic path

We can now view the change in community composition as a Markov process,
with a probability Π(X, t) that the population is in state X at a given time
t > 0. From the interpretation as a Markovian dynamics, there are instanta-
neous transition rates π(B,A) from any state A to any B. The connection
between probability distribution and transition rates is found by observing
that the rate of change in Π must consist of two terms at any time, a gain
in probability mass from other states into X, and a loss from transitions to
other states (the Kolmogorov forward equation):

∂Π(X, t)
∂t

=
∫ (

π(X,X′)Π(X′, t)− π(X′,X)Π(X, t)
)
dX′ (3)

For any observable ψ of our dynamical system, the expected value at time t
is defined as the ensemble average

E(ψ(X)) :=
∫
ψ(X)Π(X, t) dX

Applying the above definition with ψ the identity and using the Markov
property above, we find the following equality:

d
dt

E(X) =
∫

X
∂Π(X, t)

∂t
dX

=
∫∫

X
(
π(X,X′)Π(X′, t)− π(X′,X)Π(X, t)

)
dX′dX

=
∫∫

(X′ − X)π(X′,X)Π(X, t) dX′dX

= E(Aε(X)) (4)

where we introduce the operator Aε(X) :=
∫

(X′ − X)π(X′,X) dX′, and the
parameter ε that is proportional to the mutation step size (so the distance
between a mutant and its ancestor is O(ε)). The solution to Equation (4)
is called the mean path of X. Sadly this equation is not a self-contained
equation in E(X), causing much mathematical grief (or joy, depending on
one’s disposition). To dodge this issue, the deterministic path is introduced,
which is the solution to this variation on Equation (4):

d
dt

X̄ = Aε(X̄) (5)
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The mean and deterministic paths would coincide if the distibution of X is
concentrated in a point or if the integral on the right hand side is linear
in X, but neither is true in general. Whether the deterministic path is a
valid approximation of the mean path clearly depends on whether it is dom-
inated by the first order term of Aε or not. Intuitively one expects this to be
true, as the adaptive dynamics modelling approach has evolution proceeding
through very many very small steps. Thus with decreasing mutational step
size, it takes more and more mutation steps to cover the same distance in
trait space and a law-of-large-numbers effect should hold sway in the limit
ε→ 0. Dieckmann and Law (1996) assumed this to be a valid approximation,
relying on simulations plus the considerations of van Kampen (1981). More
recently Champagnat (2003, 2004) has proven the weak convergence of the
stochastic trait substitution process to the solution of Equation (6). Apart
from a number of more technical assumptions, all papers mentioned assume
ODE population dynamics and the existence of a global point attractor for
the deterministic community dynamics. Furthermore, the many-small-steps
argument suggests that the error around the deterministic approximation is
Gaussian with variance proportional to ε. This heuristic argument is con-
firmed by Champagnat (2003, 2004) who derive the full equations for this
Gaussian error process as well.

We will simplify the notations E(X) and X̄ to X henceforth, and simi-
larly for the community X, so Equation (5) is rewritten as

d
dt

X = Aε(X) (6)

One should not lose sight of the fact that for the remainder of this section, any
strategy or community not marked by a prime (′) should be read as the value
predicted by the deterministic limit; hence the mutation step V := X′

i −Xi

is the difference between a potential stochastically realized new strategy and
its deterministically calculated originator.

The next step in capturing the dynamics is to divide and conquer the
transition probabilities.

2.4 The transition probabilities

Since we consider rare mutations, any transition must be a mutation affecting
a single strategy vector. Therefore nontrivial transition rates are of the form
πo(X′

i,Xi,X), representing the rate at which the ith resident in a given com-
munity X switches from state Xi to X′

i. Thus if we interprete X as the matrix
[X1 X2 · · · XN ], then the ith column of the matrix equation describing the
deterministic path (5) simplifies to

d
dt

Xi = Ai
ε(X) =

∫
(X′

i −Xi)πo(X′
i,Xi,X) dX′

i (7)

Our next aim must therefore be to derive analytical expressions for the right
hand side of Equation (7). As a first step, we split πo into separate factors by
observing that mutation and selection are independent processes, hence these
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transition probabilities are the product of the appearance rate of mutants and
their probability of establishment:

πo(X′
i,Xi,X)

= (production rate of mutants X′
i) (establishment chance of X′

i)

=
︷ ︸︸ ︷
(birth rate of Xi types) (mutation chance Xi → X′

i)
︷ ︸︸ ︷
P (X′

i,X)

=
︷ ︸︸ ︷
λ(Xi,X) n̂i

︷ ︸︸ ︷
µ(Xi) M(X′

i −Xi,Xi) P (X′
i,X) (8)

We stress again that the values above are population averages, while n̂i stands
for the equilibrium density of the ith type. The probability P of establish-
ment is the expected outcome of a branching process. This rather complicated
beast, which depends heavily on the underlying population model, will be re-
solved in the next subsection. The other factors are easy to understand. The
appearance rate of mutants (that is, X′

i-type individuals that have Xi-type
parents) is just the total offspring production by Xi-type parents, times the
mutation rate of Xi into X′

i. This comes from the fact that we have assumed
the mutational steps to be small, so only the ith type can be the ancestor of
our mutant. The total production of Xi individuals is (by definition) the in-
stantaneous per capita birth rate of such individuals, times their equilibrium
density. The mutation chance Xi → X′

i is the probability per birth event of
mutating for an Xi-type individual, times the mutation distribution around
this trait value; M(V ,Xi) is the probability density of a mutation from Xi

to Xi + V .
In a closed system at equilibrium, the per capita birth rate is the inverse of

the expected lifespan. This was termed the ‘microcosm principle’ by Mollison
(1995), and it holds for the stochastic systems we consider. The argument
is that in a large population ergodically fluctuating around its attracting
density, the density is the product of the influx of new individuals and the
time they stay in the population. Since the population is closed, the newborns
correspond to the influx of residents, and only death ends a resident’s stay.
Hence

E(density) = E(influx of individuals per area) E(duration of stay)
= E(per capita birth rate × density) E(lifespan)
= E(per capita birth rate) E(density) E(lifespan) (9)

where the last step follows from our assumptions of large system size and
thrice differentiable model ingredients. (In a nutshell, if f is C3 at E(D),
then E(f(D)) = f(E(D)) + 1

2f
′′(E(D))VarD + O((D − E(D))3). Applying

this property first to f(D) := Dλ(D), where D is the density and λ the
per capita birth rate, and then to λ(D) itself, we have that E(λ(D)D) =
E(λ(D)) E(D)+λ′(E(D))VarD+O((D−E(D))3). As the system size is very
large, the variance and higher order moments are neglected to find the above
result (9).) So we conclude that the expected lifespan Ts is the inverse of the
birth rate:

Ts := Ts(Xi,X) = (E(per capita birth rate))−1 = λ(Xi,X)−1 (10)
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We can substitute this result in our breakdown of πo (8) and move on to a
study of P (X′

i,X).

2.5 The establishment probability

To determine the establishment probability of a given mutant, we recall from
the introduction on adaptive dynamics (Subsection 1.1) a statement about
the link between branching processes and adaptive dynamics: under very
general conditions, the probability P (Y ,X) of an individual with strategy Y
establishing itself in a given community X, is related to that type’s invasion
fitness by

P (Y ,X) > 0 ⇔ sX(Y ) > 0 (11)

(cf. Durinx and Metz 2005) (An essential difference between establishment
probability and invasion fitness is that the latter concept only looks at the
phase where the invader is rare, while the first considers all future points in
time. Thus Equivalence (11) is invalid when the long-term survival of the
invaders is threatened by a factor that is not in play while their density is
still practically zero.)

We now require a quantitative relationship between these entities. We will
derive this relation in two steps: first we relate P to the lifetime offspring
production R0, and then R0 to the fitness s. For the first part, we will use
some techniques from the theory of branching processes. By assumption we
started with the large equilibrium community X and a single mutant. Thus
the community resides on its attractor as its size makes deviations from the
mean too small to be significant, and a deterministic description is valid.
This constitutes the environment of the branching process that describes
the demography of the initial mutant and its (still rare) offspring, which are
too rare to influence each other. An approximation first heuristically derived
(as a generalization of a result of Haldane (1927)) by Ewens (1969) for sin-
gle type branching processes (Equation (12)), and its multitype counterpart
(Equation (14)), gives our first relation as we shall presently see.

If there is only a single possible birth state in our (at this timescale)
constant environment, and a small but positive scalar % so that the lifetime
reproductive output is R0 = 1 + %, then our single-type process is called
slightly supercritical. If the probability generating function g(z, %) of the off-
spring distribution is three times continuously differentiable in its arguments,
then

P (X′
i,X) =

2%
σ2

+O(%2) =
2 logR0

σ2
+O(%2) (12)

where R0 and σ2 are respectively the mean and variance of the mutant’s
offspring distribution in the community. For further information see Athreya
(1992), and also Eshel (1981) and Hoppe (1992).

Unfortunately the above result does not suffice, as we want to include
population dynamics where multiple birth states are possible. In cases where
there are d possible birth states, we denote by the stochastic variable ξlm the
number of offspring born in state l to a parent that was itself born in state
m. Then E(ξlm) = [L]lm relates these random variables to the reproduction
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matrix we introduced at the start of Subsection 1.2. Furthermore, R0 is
in such multitype models the dominant eigenvalue of the L matrix, and we
denote by u and vT respectively the right- and left eigenvectors of L belonging
to R0:

R0 = λd(L) = vTLu (13)

where we normalized u and v by requiring
∑

l |ul| = 1 and vTu = 1 (see e.g.
Caswell 2001).

One should be mindful that this notation for ξlm reverses the order of
the subscripts with respect to the traditional branching processes notation.
The definition of u and v is similarly reversed, so that in both notations
u is the stable type distribution, and v the vector of the (generationwise)
reproductive values.

Similarly, in the above d-type situation for a slightly supercritical process,
the chance Pl for a single mutant born in state l of establishing itself can be
written as

Pl(X′
i,X) =

2%
B
vl +O(%2) =

2 logR0

B
vl +O(%2) (14)

with B :=
∑

l′mn ul′vmvnE(ξml′(ξnl′ − δmn)) where δ is the Kronecker delta
(i.e., δll = 1 and δlm = 0 if l 6= m) and conditions similar to those of the
single state case (12) are assumed to be satisfied (see Athreya (1993) and
Eshel (1984) for further details). Clearly B and both eigenvectors depend on
%, as does R0. It is easily seen that if d = 1, the earlier version is recovered,
as it should be. We have mainly stated the (better known) single-type result
(12) earlier on, to hint at an interpretation of B as a variance. Bearing in
mind that u and vT are the right- and left eigenvectors of L, we find

B =
∑

l

ulE(
∑
mn

vmvnξmlξnl)−
∑
lm

ulv
2
mE(ξml)

=
∑

l

ulE((
∑
m

vmξml)
2)−

∑
lm

v2
mE(ξml)ul

=
∑

l

ul

(
Var(

∑
m

vmξml) +
(
E(
∑
m

vmξml)
)2
)
−
∑
m

v2
mR0um

=
∑

l

ulVar(
∑
m

vmξml) +
∑

l

ulv
2
l R

2
0 −

∑
m

v2
mR0um

=
∑

l

ulVar(
∑
m

vmξml) +O(%2) (15)

where the O(%2) approximation holds since R2
0 −R0 = %2 + %. By defining

σ2 :=
∑

l

ulVar(
∑
m

vmξml) (16)

we can replace B with the variance-like quantity σ2 to bring out the close
similarity of the multiple birth state case (14) with the simpler case (12):

P (X′
i,X) =

∑
n

Pn(X′
i,X)un = 2

logR0

σ2
+O(%2) (17)
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since
∑

n vnun = 1, which concludes the first step in quantifying the relation
(11) between establishment chance P (Y ,X) and invasion fitness sX(Y ).

The second step is to determine the relation between R0 and sX(Y ). To
derive this, we consider the birth kernel notation of a general model. If we de-
note the environment set by the community X as IX := I(X1,X2, . . . ,XN ),
then there exists a matrix function Λ with entries [Λ(X′

i, IX, a)]lm that are the
expected number of offspring born in state l to a X′

i-type invader, newly born
in state m, before the invader reaches age a, in the equilibrium community
X (cf. Diekmann et al. 2003). The link with the lifetime offspring production
matrix is obviously that [Λ(X′

i, IX,∞)]lm = [L]lm = E(ξlm). Using this no-
tation, the invasion fitness sX(X′

i) is the (generally unique) solution for ρ of
the Euler-Lotka equation

λd

(∫ ∞

0

e−ρaΛ(X′
i, IX,da)

)
= 1 (18)

where λd is the dominant eigenvalue operator. In Appendix A we show how
to extract from Equation (18) the following relationship:

logR0 = Tf (Xi,X) sX(Xi + V ) +O(||V ||2) (19)

where Tf is the average age at giving birth (97). If we approximate sX(X′
i)

using the fitness gradient, we can finally formulate the establishment proba-
bility (in both single (12) and multitype (17) cases) as

P (X′
i,X) =

2Tf sX(X′
i)

σ2
+O(ε2) (20)

=
2Tf

σ2
(X′

i −Xi)T
∂sX(Y )
∂Y

T

Y =Xi

+O(ε2) (21)

As this last expression contains the factor X′
i −Xi, we are free to evaluate

Tf and σ2 at Xi without changing the order of the approximation. Hence
the mutant trait value X′

i only appears in the mutation step V := X′
i −Xi.

Bear in mind that this result only holds for positive P , as such is the
starting point of the approximation formula (14).

2.6 The canonical equation for physiologically structured population models

After this divide-and-conquer campaign, we can substitute the factors that
make up the transition rates (8), (10), (21) into the equation describing the
deterministic path (7):

Ai
ε(X) =

∫
(X′

i −Xi)πo(X′
i,Xi,X) dX′

i

=
n̂i µ

Ts

∫
(X′

i −Xi)M(X′
i −Xi,Xi)P (X′

i,X) dX′
i

=
Tf

Ts

2 n̂i µ

σ2

∫
V M(V ,Xi)V T ∂sX(Y )

∂Y

T

Y =Xi

dV +O(ε3) (22)
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where ε is the average mutation step size. The estimate of the establish-
ment probability (21) introduces an error term equal to a constant times∫

V M(V ,Xi)O(||V ||2) dV .
This allows us to finally formulate the canonical equation for structured

population models with unbiased mutation distributions, giving an approxi-
mate rate of change under evolutionary selection for traits of the ith resident
in a multitype community X in the limit of infinitesimal mutational step size,
as

Ai
0(X) =

Tf

Ts

n̂i µ

σ2
M
∂sX(Y )
∂Y

T

Y =Xi

(23)

We repeat that all factors in Equation (23) are expected values, and that the
canonical equation characterizes the deterministic, not the mean, path. One
sees that most of the parameters in the canonical equation (23) depend both
on the strategy Xi and the entire community X; the exceptions are µ and M,
which only depend on the strategy.

In the last transition, a factor 2 may seem to be lost. Its disappearance
stems from the fact that the approximation formula (14) only holds for super-
critical processes, where logR0 > 0, but in other cases we must substitute a
zero. As the sign of logR0 is that of V T ∂sX(Y )

∂Y

T

Y =Xi

, we can correctly account
for the subcritical cases by integrating over a halfspace. If the distribution
the mutation distribution is unbiased, this comes down to dividing by two.
In case this assumption is not met, one has to stick to Equation (22). Al-
ternative formulations when mutations are biased are given by Champagnat
et al. (2001) and Champagnat (2004).

All the quantities in Eq. (22), including the order estimate, are still on
the original community dynamical timescale. The reason for not changing to
expressions in evolutionary time, is that doing so lets the biological interpre-
tation of model ingredients disappear from sight. The speeded up timescale
necessary for deriving a proper limit process, is constructed by equating one
unit of evolutionary time to 1/ε units of community dynamical time. The
order estimate becomes O(ε) in evolutionary time, which is higher than the
O(
√
ε) estimate for the approximation to the stochastic process using the

deterministic path (cf. the paragraph preceding Eq. (6)). Hence the overall
order of the approximation is dominated by the process noise and not by the
calculation of the mean speed of change of X, and is O(

√
ε).

One sees that the only difference between the canonical equation for un-
structured (2) and for structured populations (23) is that a factor 1/2 be-
comes a factor Tf/(Ts σ

2). As an illustration, we now bridge this gap by
recovering the canonical equation for unstructured population models from
the general result for structured models. The unstructured case deals with
ODE models, which implies the absence of any historical dependence of the
individual birth and death rates. Hence in such models the initial invasion of
a mutant is described by a linear birth-and-death process. If we denote birth
and death rates respectively by λ and µ, we can calculate the ratio Tf/(Tsσ

2).
First, the ratio of the average age at giving birth to the life expectancy can
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be computed since

Tf =

∫ ∞

0

λ e−µttdt∫ ∞

0

λ e−µt dt
=

1
µ

=
∫ ∞

0

µ e−µttdt = Ts

Second, the offspring distribution follows from the observation that a lifetime
number of i children means i successive birth events (each with relative prob-
ability λ/(λ+µ)), followed by a death event (with probability µ/(λ+µ)). All
events being independent, the probability of having i offspring is the product
of all these probabilities:

P (ξ = i) := pi =
(

λ

λ+ µ

)i
µ

λ+ µ

This geometric distribution has variance σ2 = λ(λ+ µ)/µ2, so the factor we
try to calculate is

Tf

Ts

1∑
l ulVar(

∑
m vmξml)

=
µ2

λ(λ+ µ)
=

1
2

+O(%)

since λ = µ + O(%) in a slightly supercritical situation. This completes our
recovery of the result of Dieckmann and Law (1996).

3 The normal form of the invasion function at a singularity

When trying to figure out the nature of the invasion function for a community
close to a singularity, the first naive attempts usually fail. A clear example is
the formulation of the general form of the s-function for a community of three
or more residents, close to a singular strategy. If one assumes the existence
of a Taylor expansion up to quadratic terms and checks some consistency
conditions that must surely hold, a single page of calculations (Appendix C)
gives the clean-but-nonsensical result that s = O(ε3) at the singularity, no
matter what model or parameters.

When we look at a community of two residents that are similar and close
to a singular strategy, we can see the root of the problem. At the limit
where the residents’ strategies are equal to the singular strategy, the popu-
lation densities show a line of neutrally stable equilibria (Fig. 1); any other
combination of trait vectors shows an attracting point equilibrium. Thus a
bifurcation that is unusual for general dynamical systems, is generic in the
context of invasion analysis. The illustration shows the essential nature of
the beast: even though a derivative does not exist, the directional derivatives
do. What this suggests, is to blow up singularities by separating the direc-
tional components of a strategy from its norm. The notations that follow are
natural implementations of this idea.
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Fig. 1 The nature of the beast: we consider an N -resident Lotka-Volterra sys-
tem with scalar strategies. The population dynamics for the ith type is given by
d log ni/dt = 1−

P
j a(Xi, Xj)nj − a(Xi, Y )m and similarly for the mutant’s den-

sity d log m/dt = 1−
P

j a(Y, Xj)nj−a(Y, Y )m, where the interaction function was

chosen as a(X, X ′) := 1+(X−X ′)(0.05X +1.00X ′−0.03X2−0.02XX ′+0.1X ′2).
In the first plot, strategy X1 is plotted against strategy X2, the dark gray area
is defined by sX1(X2) < 0, the light gray one by sX2(X1) < 0. In the white zone
the equilibrium densities of both residents have the same sign, positive on the ori-
gin’s side of the black curve and negative on the other. Thus all points on the four
straight lines drawn in gray represent strategy combinations that can coexist in a
protected manner (since they are mutually invadable). The second and third graph
plot the equilibrium density of X1 strategists against that of X2 strategists. The
black dot in the second plot corresponds to the coalition (−0.5, 1) indicated on
the first plot, and the gray curves on the second plot correspond to the identically
colored lines through (−0.5, 1) in the first plot. The same correspondence holds
between the two lines through the singularity at (0, 0) in the first plot, and the
curves in the third plot. The aim of these figures is to point out what happens as
the community approaches the singularity: one sees that there exists no limit for
the densities when both strategies converge to the singular trait value, although
in each direction this limit exists. Hence the black point on the second plot is the
normal situation where the density equations have a stable fixed point solution,
but in the third plot we see that this point degenerates into a line of neutrally
stable equilibria when both populations are at the singular trait value. Note that
the system is scaled such that the equilibrium density is always 1 for a monomor-
phic population. As all the curves in the second and third plot are above the line
n̂1 + n̂2 = 1, the total density in a community with two residents is always higher
than in one with a single resident. From the third plot, we expect that the total
density in a community ‘close’ to the singularity in terms of some distance measure,
will have a zero linear part when expanded in terms of this distance; the analysis
we present will show that this holds true in general.

3.1 Additional notations for this section

On top of the notations we presented in Subsection 1.3, we introduce the
following conventions.

As we are interested in the form of the fitness function for a community
near an evolutionarily singular strategy, we choose a parametrization centered
around it. Denoting the singular trait value by X∗, a resident has strategy
vector X = X∗+U, or Xi = X∗+Ui if there are several residents. Likewise
an invader has trait value Y = X∗+ V .

We introduce the small (bifurcation) parameter ε to scale the set of resi-
dent traits: for each i from 1 to N there is a vector ξi so that the ith resident
has strategy Xi = X∗+ Ui = X∗+ εξi.
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Any quantity with an asterisk will refer to a community at equilibrium
with only the singular strategy present: e.g. b∗ is the equilibrium birth flow
and I∗ the equilibrium environment when only X∗ is present. Furthermore,
all derivatives in this section will be evaluated for exactly that community.
Thus a very substantial notational simplification is the systematic suppres-
sion of variable names and the location of evaluation: we see that without
ambiguity, we can denote e.g. the average of the lifetime reproductive out-
put L = L(Y , I), derived first for its second argument then for its first and
evaluated at the singular strategy and environment, as the r × z matrix

∂2λd(L)
∂I∂Y

:=
∂

∂Y

(
∂λd(L(Y , I))

∂I

)T

Y = X∗

I = I∗
(24)

where λd is the dominant eigenvalue operator.
Since no third order derivatives occur in this paper, all partial derivatives

of scalar functions (s, r and λd) are either row vectors or matrices. A minor
complication is however the occurrence of tensors of rank 3 as derivatives of
matrix functions (G and L). Instead of solving this issue by treating them
componentwise and thus cluttering the notation, we interprete these tensors
as matrices with row vectors as elements by introducing an additional nota-
tion: to take the derivative of L in the mutant direction as an example, we
define it componentwise as [

∂L

∂Y

]
lm

:=
∂[L]lm
∂Y

(25)

Whenever this symbol occurs, it will always be in an expansion and acting
on an appropriately dimensioned vector like U, so that we have a d× d ma-
trix ∂L

∂Y
(U) that gives no further complications. The slightly different layout

serves as a reminder that the vector-and-matrix notation cannot be used
when the tensor is separated from its argument in parentheses. Whenever
possible, we opt not to use this unfamiliar notation: e.g. since b∗ is a con-
stant vector, ∂L

∂Y
(U) b∗ may be replaced by ∂Lb∗

∂Y U.
In the case of a double subscript, parentheses are added to remove ambi-

guity: e.g. (bi)l is the lth component of the ith resident’s birth flow. Without
parentheses, bil might just as well be a component of some matrix b.

3.2 Aims of this section

In the introduction we have defined the invasion fitness of type Y in an
N -resident community X = {X1,X2, . . . ,XN} as the long-term average per
capita growth rate of a rare Y -type individual in a large equilibrium commu-
nity made up of all the resident types, X1 to XN . In this section we show that
for such an N -resident community, the invasion fitness function sX(Y ) up to
quadratic terms can be constructed using only the trait values present plus
the second order derivatives at the singularity of the simpler fitness function
sX(Y ).
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The effect is that the task of formulating the fitness function for a poly-
morphic community in the neighbourhood of an evolutionarily singular strat-
egy for an arbitrarily complicated structured population model, is reduced to
formulating the one-resident s-function, and either fitting the corresponding
Lotka-Volterra model (Proposition 1) or substituting the simple s-functions
into the normal form (73) that we will present below. Both procedures yield
an invasion fitness function sX(Y ) which is correct up to quadratic terms in
the small parameter ε.

For example, assume one knows the simple fitness function sX(Y ) for
some model and one has resident strategies X1 and X2 (with N = 2). First
we calculate the second order partial derivatives of sX(Y ) at the singularity:

C11 :=
1
2
∂2sX(Y )
∂X2 C10 :=

1
2
∂2sX(Y )
∂X∂Y

C00 :=
1
2
∂2sX(Y )
∂Y 2 (26)

Using the additional notations U := U1+U2
2 and ∆ := U1−U2

2 where the
deviations U1, U2 and V are O(ε), we will show in Subsection 3.5 that the
invasion fitness of any mutant Y is

sX1X2(Y ) = V TC00V + 2U
T

C10V + U
T

C11U −∆TC00∆

+ 2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+O(ε3) (27)

Therefore we can consider the equation above to be a normal form. It imme-
diately shows that a Taylor expansion of sX1X2 does not exist and explains
why calculations like those in Appendix C are doomed to fail, with the ex-
ception of the case where strategies are scalar so that the equation above
simplifies to sX1X2(Y ) = (X1 − Y )(X2 − Y )C00 +O(ε3).

One available route for deriving the normal form for general N -resident
population dynamics close to a singular strategy and showing the mentioned
niceties, is to first prove the general case, then cast a general Lotka-Volterra
system in that form and show what it reduces to, and lastly demonstrate that
this form only depends on the mentioned strategies and derivatives. The un-
pleasant reality however is, that casting Lotka-Volterra models into the form
of physiologically structured population models requires us in general to in-
troduce an infinite dimensional vector as description of the environmental
conditions I (one environmental dimension for every possible trait value).
The proof for the infinite dimensional case requires more sophisticated math-
ematical tools than we use here, like operators and distributions instead of
finite dimensional matrices and vectors. We fully expect, though, that the
same techniques as used in this paper still hold for any model on a space
supporting a chain rule and an inverse function theorem.

For clarity’s sake and given our own more limited mathematical expertise,
we have opted for another route: we restrict ourselves to the case of structured
populations with a finite dimensional environment, and show that the same
normal form is found as derived separately for Lotka-Volterra systems. We
will start with a detailed exposition of the Lotka-Volterra case in view of
its familiarity, followed by the corresponding calculations for the structured
case.
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3.3 The normal form for Lotka-Volterra systems

The following is a general form for Lotka-Volterra systems, where r(Y ) is
the per capita growth rate in a virgin environment (i.e., the growth rate in
the absense of competitors), and the interaction is fully determined by the
interaction function a(Y ,X) plus the trait value and the densities of the
interacting types. We assume that r and a are C3 functions, to guarantee
the existence of an expansion of the fitness function up to order O(ε3). If the
community has N residents plus an invading type, the equations that govern
growth can be formulated as

∀j :
1
nj

dnj

dt
= r(Xj)

(
1 −

∑
i

a(Xj ,Xi)ni − a(Xj ,Y )m
)

1
m

dm
dt

= r(Y )
(
1 −

∑
i

a(Y ,Xi)ni − a(Y ,Y )m
) (28)

We will first perform a trait-dependent rescaling and some calculations per-
taining to monomorphic communities.

We first add a tilde to indicate rescaled quantities, and later drop the tilde
once convinced that rescaling has no effect on the fitness value. We multiply
the density of any type with the strength of its self-competition and similarly
divide the interaction function:

ñi := a(Xi,Xi)ni

m̃ := a(Y ,Y )m
ã(Xi,Xj) :=

a(Xi,Xj)
a(Xj ,Xj)

(29)

Thus for any strategy X we have that ã(X,X) = 1 and consequently the
equilibrium density in a monomorphic world is always ˆ̃n = 1, as seen from
the equilibrium equation 0 = r(X)(1 − ã(X,X)ˆ̃n). We see that for exam-
ple a(Xi,Xj)nj equals ã(Xi,Xj)ñj , so that the per capita growth rate, and
therefore the invasion fitness sX(Y ), is independent of this rescaling. So with-
out loss of generality, we assume from here onwards that a(X,X) = 1 for
any X and hence that n̂ = 1 if there is a sole resident type.

By a literal translation of the definition of the s-function (see 1.1) into
symbols, we calculate the invasion fitness for a monomorphic community as

sX(Y ) = lim
T→∞

lim
m→0

1
T

∫ T

0

1
m

dm
dt

dt
n=n̂

= r(Y )
(
1− a(Y ,X)) (30)

Proposition 1 For every single-resident fitness function sX(Y ) and every
strictly positive growth rate in a virgin environment r(Y ), there exists an
interaction function a(Y ,X) such that the resultant Lotka-Volterra model
(28) has the same single-resident s-function.

Proof As we comply to the rescaling (29), the suitable interaction function
can be found from the formula for the invasion fitness in a Lotka-Volterra
model (30) as a(Y ,X) := 1− sX(Y )/r(Y ). ut
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In practice, a constant growth rate r(Y ) := 1 is usually preferable as it
tends to simplify calculations.

Once we have fitted an interaction function to a simple fitness function
and growth rate, the corresponding fitness for a mutant of type Y invading
in a polymorphic Lotka-Volterra community {X1, X2, . . . , XN} is found as
in Equation (30), by combining the definitions of its dynamics (28) and of
s-functions:

sX(Y ) = r(Y )

(
1−

∑
i

a(Y ,Xi)n̂i

)
(31)

Then we simply solve the equilibrium densities n̂i from the growth equations
and find that

sX(Y ) = r(Y )
(
1−

(
a(Y ,X1) a(Y ,X2) · · · a(Y ,XN )

)
A−11

)
(32)

where A is the interaction matrix for the given community, with entries
[A]ij := a(Xi,Xj), and we recall that 1 is a column vector of 1’s (cf. 1.3).

From Equation (32) we see that except for the non-Lotka-Volterra case,
there will in general not exist a well-defined interaction function a(Y ,X)
that satisfies this equation for all communities and invaders:

Proposition 2 Proposition 1 does not hold if the words single-resident are
replaced by N -resident.

Proof Equation (32) shows that Lotka-Volterra systems only allow pairwise
interactions (that are scaled by a specific type of density regulation). Any
multiresident s-function that fails these requirements can therefore serve as a
counterexample. In principle, the only constraint on s-functions is that they
have to satisfy the following consistency conditions (Metz et al. 1996): zero
fitness for each of the residents (i.e., sX(Xi) = 0 for all i) and invariance
under the renaming of residents (i.e., sXiXj (Y ) = sXjXi(Y ) for all i, j). The
simplest example would be

sX1X2(Y ) := (X1 − Y )(X2 − Y )

where the reader can verify that no choice of growth rate and interaction
function will lead to a Lotka-Volterra model with this two-resident s-function.
A slightly less caricatural example starts from the fitness function of an
N -resident Lotka-Volterra model (31), and adds interaction terms between
triples of strategies

sX(Y ) := r(Y )

1−
∑

i

a(Y ,Xi)n̂i −
∑
ij

b(Y ,Xi,Xj)n̂in̂j


through an appropriate function b(Y ,X,X ′). For nontrivial choices of b, it is
clearly impossible to account for the above fitness function by using a Lotka-
Volterra model. ut
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How to relate N -resident Lotka-Volterra and physiologically structured
population models instead, will be the central question of this section. To
address it we return our attention to the simple fitness function (30) we
found, which can be expanded in the small parameter ε as

sX(Y )
= r(X∗+ V )

(
1− a(X∗+ V ,X∗+ U)

)
=
(
r(X∗) + r′(X∗)V + 1

2V Tr′′(X∗)V +O(ε3)
)

×
(
1− α− β1U − β0V −U TΓ11U − 2U TΓ10V − V TΓ00V +O(ε3)

)
= r(X∗)(1− α)−

(
r(X∗) (β1U + β0V ) + r′(X∗)V (1− α)

)
− r(X∗)

(
U TΓ11U + 2U TΓ10V + V TΓ00V

)
+ r′(X∗)V (β1U + β0V )

+ 1
2V Tr′′(X∗)V (1− α) +O(ε3) (33)

were all terms of the same order in ε are grouped together.
As Γ11 and Γ00 are always pre- and postmultiplied by the same vector,

their antisymmetric parts are irrelevant. Thus there is an equivalence class
of matrix choices for which the evaluation of Expansion (33) is the same, and
from this class we choose a unique element by demanding that Γ11 and Γ00
are symmetric. As an aside we note that while it is highly nongeneric for Γ10
to be symmetric as well, this phenomenon happens often in simple models:
either as a result of special symmetries (cf. our example, Subsection 4.6), or
since the model is formulated so that the environmental input is effectively
one-dimensional, and monotonically influences the invasion fitness (cf. Metz
et al. 1996).

Several consistency conditions can be used to simplify Equation (33). As
a result of its definition, sX(X) is zero for any value of X. So for any U = V ,
the four parts of the right hand side of (33) — constant, linear, quadratic and
higher order in ε — must be separately zero. Without loss of generality we
may assume that r(X∗) is strictly positive, as else the singular type would
not be viable. The constant, linear and quadratic parts of the equation then
respectively imply that α = 1, β1 = −β0 and Γ11 + Γ10 + Γ10

T + Γ00 = 0.
Since X∗ is singular, by definition 0 T = ∂sX∗ (Y )

∂Y Y =X∗ = −r(X∗) β0, so
−β1 = β0 = 0 T. We rename the matrices using C := −r(X∗)Γ so that the
expansion (33) simplifies to

sX(Y ) = U TC11U + 2U TC10V + V TC00V +O(ε3) (34)

From this we see that renaming and rescaling the Γ-matrices into the C-
matrices was consistent with the earlier definition (26) of those as second
order partial derivatives at the singularity.

We can now start considering N -resident invasion fitness functions close
to singular points. Starting from Equation (31), we see that we can express
much of the multiresident s-function immediately in terms of single-resident
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s-functions:

sX(Y ) = r(Y )

(
1−

∑
i

a(Y ,Xi)n̂i

)

= r(Y )

(
1−

∑
i

(
1− sXi

(Y )
r(Y )

)
n̂i

)

= r(Y )

(
1−

∑
i

n̂i

)
+
∑

i

sXi(Y )n̂i (35)

We will now expand this last equality up to but not including O(ε3)-terms.
In view of the considerations at the start of this section, we change our
coordinates from densities n̂i to fractional densities pi plus the difference in
total density from the monomorphic equilibrium density:

pi :=
n̂i∑
j n̂j

∆n :=
∑

i

n̂i − 1 (36)

Note that the constant term of ∆n is zero since ε = 0 corresponds to a
monomorphic community X = {X∗}. Introducing a shorthand notation,

c(U ,V ) := U TC11U + 2U TC10V + V TC00V (37)

we see that terms like c(Ui,V )∆n will be discarded, since c(U ,V ) itself is
already purely second order in ε. Using the new coordinates, we see that

sX(Y ) = −
(
r(X∗) + r′(X∗)V

)
∆n+

∑
i

c(Ui,V ) pi +O(ε3)

From the above we also note that only the constant part of the fractions pi

matters in the calculation of sX(Y ) up to the given order. We expand the
density difference as ∆n = e1ε+ e2ε

2 +O(ε3). Since sX(Xi) is zero for each
resident, we have for each i ∈ {1, 2, . . . , N} that

0 = −r(X∗)(e1ε+ e2ε
2)− r′(X∗)Ui e1ε+

∑
j

c(Uj ,Ui) pj +O(ε3) (38)

From the part that is linear in ε, we see that e1 too is zero, and from the
quadratic part we have that r(X∗)e2ε2 =

∑
j c(Uj ,Ui)pj . Thus N + 1 un-

knowns (p1, p2, . . . , pN and e2) have to be solved using the consistency
condition

∑
i pi = 1 plus the requirement that for each i from 1 to N∑

j

2Uj
TC10Ui︸ ︷︷ ︸
[E]ij

pj︸︷︷︸
(P )j

+
∑

j

Uj
TC11Uj pj − r(X∗)e2ε2︸ ︷︷ ︸

θ

= −Ui
TC00Ui︸ ︷︷ ︸
(T )i

(39)

Together these equations contain the componentwise definitions of the scalar
θ, the column vectors T and P , and the matrix E. We can also gather together
all N equations into a single vectorial one, using the vector 1 that has all its
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components equal to one (cf. 1.3 Notations). The fact that the proportions
necessarily sum up to 1 gives us an additional (scalar) equation, so we have
altogether N + 1 equations in N + 1 unknowns:{

EP + θ1 = T
1 TP = 1 (40)

If we treat θ as an unknown (equivalent to the unknown e2 once P is solved),
these are linear equations. Hence we extend E,P and T to

E∗ :=
[

E 1
1 T 0

]
P ∗ :=

(
P
θ

)
T ∗ :=

(
T
1

)
so that we can straightforwardly solve θ and the proportions pi in terms of
second order derivatives of simple s-functions from

P ∗ = E∗−1T ∗ (41)

to come to the final conclusion that

sX(Y ) = −r(X∗)∆n+
∑

i

c(Ui,V )pi +O(ε3)

= θ + 2

(∑
i

piUi
T

)
C10V + V TC00V +O(ε3) (42)

where each term or factor is expressed in second order partial derivatives of
the simple s-function, or a strategy difference vector (Ui or V , of respectively
a resident or the invader), since θ and the proportions are solved from


p1

...
pN

θ

 =


2U1

TC10U1 · · · 2UN
TC10U1 1

...
. . .

...
...

2U1
TC10UN · · · 2UN

TC10UN 1
1 · · · 1 0


−1 

−U1
TC00U1

...
−UN

TC00UN

1

 (43)

The invertibility of the matrix E∗ is clearly an important issue here. It will
be treated in Subsection 3.6 (and touched upon in 3.5), but the gist is that
generically E∗ is invertible if the community {X1,X2, . . . ,XN} exists.

3.4 The normal form for physiologically structured population models

As explained in Subsection 1.2, the equilibrium equations for a physiologically
structured community are{

bi = L(Xi, I)bi (∀i)
I =

∑
i G(Xi, I)bi

(44)



28

In Appendix B we show that if the residents and the invader are near a
singularity, the invasion fitness is

sX(Y ) =
logR0(Y , I)
Tf (Y , I)

+O(ε3) (45)

where R0 is the dominant eigenvalue λd(L) of the next-generation matrix L,
I the equilibrium environment set by the community X := {X1, . . . , XN},
and Tf the average age at giving birth (cf. Eq. (97)).

As before, we will use an invertible, trait-dependent rescaling. In this
case, we do not rescale population densities at equilibrium to 1 (while com-
pensating by rescaling the interaction function, or vice versa) as these do not
appear in the equilibrium equations. Instead we rescale the birth flow such
that, for the monomorphic equilibrium community set by any strategy X in
the trait space,

b = b∗ (46)

where b∗ is the equilibrium birth flow for a community with only the singular
strategy X∗ present. We do this by defining for each strategy X the rescaled
birth flow b̃ := Db where D is the diagonal d × d matrix with components
[D]ll := b∗l /bl, where bl is the lth component of the unscaled equilibrium birth
flow in the monomorphic community set by X. This transformation clearly
ensures that Equation (46) is satisfied. If all components of b∗ are strictly
positive, there is a neighbourhood of the singularity in which the birth flow bl
in each state is nonzero, so the matrix D is well-defined. The invertibility of
the rescaling is guaranteed as well if all components of b∗ are strictly positive.
So we assume henceforth that b∗l > 0, which we can do essentially without loss
of generality since models flouting this assumption should be rare indeed. As
in the Lotka-Volterra case (29), we compensate the first rescaling by rescaling
the interaction; here by choosing L̃ := DLD−1 and G̃ := GD−1. The matrices
L̃ and L necessarily have the same eigenvalues, hence the rescaling does not
affect sX(Y ) while it allows us to greatly simplify the calculations. From here
on we revert to the old notations while assuming the rescaling has happened.

To expand a structured population’s invasion fitness function (45) near
a singularity, we have to look at the lower orders of dependence on ε for
all unknowns. To that end, we start by defining Ii as the monomorphic
environment set solely by strategy Xi, so that Ii = G(Xi, Ii)b∗ (note that the
rescaling has been used here). We then expand respectively the polymorphic
environment set by X and the monomorphic environment set by Xi as follows:

I = I∗ + εI ′ + ε2I ′′ +O(ε3)
∀i : Ii = I∗ + εI ′i + ε2I ′′i +O(ε3) (47)

In order to establish a relation between the N -resident environment I and
its N monomorphic counterparts I1, I2, . . . , IN , we introduce first some
new coordinates, similar to those we used in the Lotka-Volterra case (36). We
will need to calculate the relative abundance of each type of resident in the
community. But as we now look from a generational perspective, we define
this time a vector pi that is the proportional abundance at birth of the ith
type in the respective birth states, plus a difference vector ∆b that is the
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proportional change in total births from the monomorphic equilibrium: for
each birth state from 1 to d and for each resident from 1 to N ,

∀l,∀i : (pi)l :=
(bi)l∑
j(bj)l

1 + (∆b)l :=

∑
j(bj)l

b∗l
(48)

We expand the N proportion vectors pi and ∆b with respect to ε as

∀i : pi = po
i + qi ε+O(ε2)

∆b = e0 + e1 ε+O(ε2) (49)

defining vectors e0, e1, po
1, po

2, . . . , po
N , q1, q2, . . . , qN in the process. As

happened with the density difference ∆n in the Lotka-Volterra case (Eq.
(36)), the constant part of the birth flow difference automatically disappears:
e0 = 0 since ε = 0 corresponds to a monomorphic case. Note that for each
birth state l separately these proportions sum up to one, since

∑
i(pi)l =∑

i(bi)l/
∑

j(bj)l = 1. Expanding both sides of these equalities with respect
to ε, we find two times d consistency conditions∑

i

po
i = 1

∑
i

qi = 0 (50)

As we only have the equilibrium equations (44) to start from, let’s begin
by expanding all parts of the first equation:

(bi)l = (pi)l

∑
j

(bj)l =
(
(po

i )l + (qi)l ε
) (

1 + (e1)l ε
)
b∗l +O(ε2) (51)

L(Xi, I) = L(X∗, I∗) +
∂L

∂Y
(εξi) +

∂L

∂I
(εI ′) +O(ε2) (52)

where e.g. ∂L
∂I

(εI ′) is the d × d matrix with entries
(

∂L(X∗,I)lm

∂I I=I∗

)
εI ′ in

accordance with the conventions introduced in Subsection 3.1.
From Equations (51) and (52) we see that bi = L(Xi, I)bi can be rewritten

for each i as(
(po

i )l + ε(qi)l + ε(po
i )l(e1)l

)
b∗l +O(ε2)

=
∑
m

[
L(X∗, I∗) +

∂L

∂Y
(εξi) +

∂L

∂I
(εI ′)

]
lm

(
(po

i )m + ε(qi)m

+ ε(po
i )m(e1)m

)
b∗m

=
∑
m

[
L(X∗, I∗)

]
lm

(po
i )mb

∗
m

+
∑
m

ε

[
∂L

∂Y
(ξi) +

∂L

∂I
(I ′)

]
lm

(po
i )mb

∗
m

+
∑
m

[
L(X∗, I∗)

]
lm

(
ε(qi)m + ε(po

i )m(e1)m

)
b∗m (53)

As this equality has to hold for all ε, it has to hold for all orders of ε separately.
Thus the constant part tells us that for each i the vector with components
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(po
i )lb

∗
l is an eigenvector of L(X∗, I∗) with eigenvalue 1. Since this eigenvalue

was assumed to be simple, with corresponding eigenvector b∗, necessarily
there must exist some scalars pi such that

∀i : po
i = pi1 (54)

This fact helps us simplify the part of Equation (53) that is linear in ε.
We can transform it further by summing over i, so that the qi-components
disappear (50):

(e1)lb
∗
l =

∑
i

∑
m

[
∂L

∂Y
(ξi) +

∂L

∂I
(I ′)

]
lm

pi b
∗
m

+
∑
m

[
L(X∗, I∗)

]
lm

(e1)mb
∗
m (55)

If we define a ‘help’ vector heb componentwise as (heb)l := (e1)lb
∗
l , we have

heb =
∑

i

pi
∂Lb∗

∂Y
ξi +

∂Lb∗

∂I
I ′ + L(X∗, I∗)heb (56)

0 =
∂Lb∗

∂Y
ξi +

∂Lb∗

∂I
I ′i (57)

where the second equation is the monomorphic case, for which we scaled the
equilibrium birth flow to b∗ so e1 = heb = 0 .

Let’s now look at the second equilibrium equation, I =
∑

i G(Xi, I)bi. If
we here too expand both I and bi while using the new coordinates (48), we
can combine the per-state summation rules (50) with the fact that po

i = pi1 ,
to find that

I∗+ εI ′ +O(ε2)

=
∑

i

[
G(X∗, I∗) +

∂G

∂I
(εI ′) +

∂G

∂Y
(εξi)

]
(
pi + ε(qi)1 + ε pi(e1)1

)
b∗1

...(
pi + ε(qi)d + ε pi(e1)d

)
b∗d


= G(X∗, I∗)b∗ + εG(X∗, I∗)heb + ε

∂G

∂I
(I ′)b∗ +

∑
i

piε
∂G

∂Y
(ξi)b

∗ (58)

The part of this equation that is independent of ε does not tell us anything
new, but the part that is linear in ε gives the following relation:

I ′ = G(X∗, I∗)heb +
∂Gb∗

∂I
I ′ +

∑
i

pi
∂Gb∗

∂Y
ξi

From this we solve I ′ and I ′i (where again e1 = 0 so heb disappears), as

I ′ =
[
id− ∂G b∗

∂I

]−1
(

G(X∗, I∗)heb +
∑

i

pi
∂Gb∗

∂Y
ξi

)
(59)

I ′i =
[
id− ∂G b∗

∂I

]−1
∂Gb∗

∂Y
ξi (60)
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where id represents the identity matrix, and taking the inverse is allowed as
this transformation is nonsingular provided we stay away from bifurcation
points of the population dynamics.

With the shorthand notations L∗ := L(X∗, I∗) and G∗ := G(X∗, I∗), we
have as a consequence of Equations (59) and (60) that

I ′ =
∑

i

pi I ′i +
[
id− ∂G b∗

∂I

]−1

G∗ heb (61)

which we substitute into Equation (56) so that we can use Equality (57):

[id− L∗]heb

=
∑

i

pi
∂Lb∗

∂Y
ξi +

∂Lb∗

∂I
I ′

=
∑

i

pi

(
∂Lb∗

∂Y
ξi +

∂Lb∗

∂I
I ′i

)
+
∂Lb∗

∂I

[
id− ∂G b∗

∂I

]−1

G∗ heb

=
∂Lb∗

∂I

[
id− ∂G b∗

∂I

]−1

G∗ heb (62)

After a slight rewrite we find that

0 =
[
[L∗ − id] +

∂Lb∗

∂I

[
id− ∂Gb∗

∂I

]
−1

G∗
]

heb (63)

As there is no a priori, fixed connection between L and G — changing one
without changing the other (while not violating consistency conditions) re-
sults in an equally valid population model — we see that the matrix in this
equation generically (within the set of local equivalence classes of models
characterized by L, G, ∂L/∂I and ∂G/∂I) has full rank. In the special case
of a single birth state model, clearly id = L∗ = 1, and hence e1 = e1 = 0. In
general, L∗ − id always has rank d− 1 as [L∗ − id]b∗ = 0 and this eigenvalue
is simple. Other examples corroborating the intuition that the matrix in Eq.
(63) generically is invertible, are models with G(Xi, I) independent of I.

Therefore e1 = heb = 0 is generically the only possible solution, since all
entries of b∗ are strictly positive as argued in the justification of the birth
flow rescaling (46). Hence Equation (61) shows that the relation we sought
between the linear parts of the environments Ii and I is simply

I ′ =
∑

i

I ′ipi (64)

With this, we can formulate an expansion of the multitype s-function at the
singularity X∗, up to O(ε3). For that, we start by recalling the single-resident
invasion fitness for structured population models (45),

sXi
(Y ) =

log λd

(
L(X∗+ V , I∗ + εI ′i +O(ε2)

)
Tf (Y , Ii)

+O(ε3)
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First we note that the dominant eigenvalue of L(X∗, I∗) is one, so that
the numerator has no constant part (with respect to ε). Therefore, only the
constant part T ∗f := Tf (X∗, I∗) of the denominator appears in a first order
expansion of sX(Y ):

sXi
(Y ) =

λd

(
L(X∗+ V , I∗ + εI ′i)

)
− 1

Tf (Y , Ii)
+O(ε2)

=
1
T ∗f

(
∂λd(L)
∂Y

V + ε
∂λd(L)
∂I

I ′i

)
+O(ε2) (65)

As we are expanding at a singular point, we have ∂s/∂Y = ∂λd(L)/∂Y = 0 T.
But because sX(X) = 0 for any X, the linear terms of (65) must add up
to zero when choosing V = Ui — or if you prefer, they add up to zero as
a consequence of Equation (57), since for simple eigenvalues ∂λd(L)/∂f =
(v∗Tb∗)−1 v∗T[∂L/∂f ]b∗ for any f , where v∗T is a left eigenvector of L with
eigenvalue 1 (cf. Eq. (96)). Hence we also have 0 = (∂λd(L)/∂I)I ′i, and be-
cause of (64) also the more general 0 = (∂λd(L)/∂I)I ′. This shows that inva-
sion fitness functions for N -resident communities, expanded at singularities,
do not have linear terms either.

As we have just shown that in an expansion of λd(L) no linear terms ap-
pear, we see that in a quadratic expansion of the N -resident fitness function,
only the constant part of the denominator Tf and the first order part of the
logarithm will have to appear:

sX(Y ) =
log λd

(
L(X∗+ V , I∗ + εI ′ + ε2I ′′

)
Tf (Y , I)

+O(ε3)

=
λd

(
L(X∗+ V , I∗ + εI ′ + ε2I ′′)

)
− 1

T ∗f
+O(ε3)

=
1
T ∗f

(
ε2
∂λd(L)
∂I

I ′′ +
1
2
ε2I ′

T ∂2λd(L)
∂I2 I ′

+ εI ′
T ∂2λd(L)
∂I∂Y

V +
1
2
V T ∂

2λd(L)
∂Y 2 V

)
+O(ε3) (66)

If we compare this expansion, in the case of a single resident Xi, with the
Taylor series of the simple s-function at a singularity, sXi(Y ) = 1

2Ui
T ∂2s

∂X2 Ui+
Ui

T ∂2s
∂X∂Y V + 1

2V T ∂2s
∂Y 2 V +O(ε3), we can associate the partial derivatives of

simple s-functions with the terms just found:

Ui
T ∂

2s

∂X2 Ui =
1
T ∗f

(
2ε2

∂λd(L)
∂I

I ′′i + ε2I ′i
T ∂2λd(L)

∂I2 I ′i

)
Ui

T ∂2s

∂X∂Y
V =

1
T ∗f

εI ′i
T ∂2λd(L)
∂I∂Y

V

V T ∂
2s

∂Y 2 V =
1
T ∗f

V T ∂
2λd(L)
∂Y 2 V (67)
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To simplify the notation and to bring out the similarity to the Lotka-
Volterra case (34), we use the matrices C11, C00 and C10 introduced before
(cf. Eq. (26)), which consist of the second order partial derivatives of sX(Y )
at X = Y = X∗. In addition, we use a shorthand notation

θ :=
ε2

T ∗f

(
∂λd(L)
∂I

I ′′ +
1
2
I ′

T ∂2λd(L)
∂I2 I ′

)
(68)

Since for each resident necessarily sX(Xi) = 0, we see from combining the
expansion of sX(Y ) (66) with Equality (64) that for each i

0 = ε2
∂λd(L)
∂I

I ′′ +
1
2
ε2I ′

T ∂2λd(L)
∂I2 I ′ + ε2I ′

T ∂2λd(L)
∂I∂Y

ξi +
1
2
ε2ξT

i

∂2λd(L)
∂Y 2 ξi

= T ∗f

(
θ + 2

∑
j

Uj
TC10Uipj + Ui

TC00Ui

)
(69)

As for the Lotka-Volterra case (39), we can formulate these N equalities as

∀i :
∑

j

2Uj
TC10Ui︸ ︷︷ ︸
[E]ij

pj︸︷︷︸
(P )j

+ θ = −Ui
TC00Ui︸ ︷︷ ︸
(T )i

(70)

From here onwards, we can paraphrase all steps that led us to the result in
the Lotka-Volterra case, since we have the same set of equations and all terms
and factors have exactly the same meaning.

To reiterate succinctly, our set of N equations (70) can be used to define
componentwise an N × N matrix E and vectors P and T , so that we can
write the N equations in a vectorial form: E P + θ1 = T . Treating θ as an
independent unknown, we have N +1 linear equations (since additionally we
know 1 TP =

∑
i pi = 1) in the N + 1 unknowns θ and p1, p2, . . . , pN . We

then gather the vectorial and the scalar equation together by extending E,
P and T as

E∗ :=
[

E 1
1 T 0

]
P ∗ :=

(
P
θ

)
T ∗ :=

(
T
1

)
(71)

so that θ and the proportions pi are solved from P ∗ = E∗−1T ∗ using only
the C-matrices and the strategy differences Ui. Componentwise this gives

p1

...
pN

θ

 =


2U1

TC10U1 · · · 2UN
TC10U1 1

...
. . .

...
...

2U1
TC10UN · · · 2UN

TC10UN 1
1 · · · 1 0


−1 

−U1
TC00U1

...
−UN

TC00UN

1

 (72)

The issue of the invertibility of E∗ will be explored in Subsection 3.6. Note
however, that a full rank of E∗ is a necessity for the structurally stable exis-
tence of the community {X1,X2, . . . ,XN}.

Finally, we have to cast the second order approximation of sX(Y ) close to
X∗ (45) in the form we found for Lotka-Volterra systems (42). To that end,
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we use Equality (66), the relationship I ′ =
∑

i piI
′
i (64), and the definitions

of θ and the C-matrices. Then we find the following form for the invasion
fitness function of any structured population model with N resident types:

sX(Y ) =
log(λd(L(Y , I)))

Tf (Y , I)
+O(ε3)

=
1
T ∗f

(
ε2
∂λd(L)
∂I

I ′′ +
1
2
ε2I ′

T ∂2λd(L)
∂I2 I ′

)
+

1
T ∗f

(
εI ′

T ∂2λd(L)
∂I∂Y

V +
1
2
V T ∂

2λd(L)
∂Y 2 V

)
+O(ε3)

= θ + 2

(∑
i

piUi
T

)
C10V + V TC00V +O(ε3) (73)

This is exactly the same equation as we found for the invasion fitness in
Lotka-Volterra models (42) and leads us to the following proposition:

Proposition 3 The invasion fitness function of a general physiologically
structured population model with N resident strategies near an evolution-
arily singular strategy, can be approximated by that of an N -resident Lotka-
Volterra system, up to terms of order O(ε3) for distances between residents
and singularity of order O(ε).

Proof By comparing the multiresident s-functions of the Lotka-Volterra case
(42–43) with the physiologically structured population case (72–73), it is seen
that both depend in exactly the same way on the second order derivatives of
the single-resident s-function at X∗ (i.e., the C-matrices) and the deviations
Ui of the resident strategies X∗+ Ui from the singular strategy. Applying
Proposition 1, we can fit a Lotka-Volterra model with the same N -resident
fitness function as the given physiologically structured population model, up
to quadratic terms in ε.

As remarked before, adding the requirement that the fitted Lotka-Volterra
model has a trait-independent growth rate r in virgin environments, makes
the approximating system unique since a(Y ,X) = 1− sX(Y )/r. ut

Proposition 3 may be read as follows: The s-function for N -resident
Lotka-Volterra models (31) is a second order normal form for multiresident
fitness functions, since for any given structured population model for which
we can write down the simple invasion function sX(Y ), we can easily fit a
Lotka-Volterra model by defining the growth rate in a virgin environment
and the interaction function as

∀X,Y : r(Y ) := 1, a(Y ,X) := 1− sX(Y ) (74)

The single-resident fitness function of this Lotka-Volterra model is exactly
the same as that of the given model, and the multiresident s-function for
Lotka-Volterra models (31) was found to be

sX(Y ) = 1−
(
a(Y ,X1) · · · a(Y ,XN )

)
A−1 1
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where the interaction matrix A was defined as

A :=


a(X1,X1) a(X1,X2) · · · a(X1,XN )
a(X2,X1) a(X2,X2) · · · a(X2,XN )

...
...

. . .
...

a(XN ,X1) a(XN ,X2) · · · a(XN ,XN )

 (75)

with necessarily each diagonal element a(Xi,Xi) equal to one.
Proposition 3 guarantees that the difference between this polymorphic

fitness function and the correct function for the given population model is of
order O(ε3).

3.5 The case of two residents

We found a normal form for fitness functions that is generally applicable to
any N -resident Lotka-Volterra (42) or physiologically structured (73) com-
munity near a singularity. It is however not a very perspicacious relation
between the model ingredients.

If there are only two residents, we can come to a more insightful form
by choosing as coordinates U := (U1 + U2)/2 and ∆ := (U1 − U2)/2 (so
conversely U1 = U + ∆ and U2 = U −∆). Translating T ∗ and E∗, we have

T ∗ :=

−U1
TC00U1

−U2
TC00U2

1

 =

−U
T

C00U − 2∆TC00U −∆TC00∆

−U
T

C00U + 2∆TC00U −∆TC00∆
1


and (after some computing)

E∗−1

= − 1
8∆TC10∆



−1 1 4U
T

C10∆− 4∆TC10∆

1 −1 −4U
T

C10∆− 4∆TC10∆

4∆TC10U −4∆TC10U 16∆TC10∆U
T

C10U

− 4∆TC10∆ − 4∆TC10∆ − 16U
T

C10∆∆TC10U


By adding the second row or column to the first, we can calculate that
detE∗−1 = −8∆TC10∆. Thus we find p1, p2 and θ from E∗−1T ∗ to be

p1

p2

θ


=



1
2
− 1

2
U

T

C00∆ + U
T

C10∆

∆TC10∆

1
2

+
1
2

U
T

C00∆ + U
T

C10∆

∆TC10∆

−∆TC00∆−U
T

C00U − 2U
T

C10U

+ 2
∆TC10U∆T[C00 + CT

10]U
∆TC10∆


(76)
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Substituting these three in the normal form (73) presented before, we find

sX1X2(Y ) = V TC00V + 2U
T

C10V −U
T

[C00 + 2C10]U −∆TC00∆

+ 2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+O(ε3) (77)

which is Equation (27) as presented in Subsection 3.2, ‘Aims’. As an aid to
the reader, we remark that most of the correspondence between the general
(73) and the two-resident normal form (77) is seen by observing that

∑
i

piUi
T = U

T − ∆T[C00 + CT
10]U

∆TC10∆
∆T

For two strategies close to X∗, to be mutually invadable (a requirement
for stable coexistence) implies that ∆TC10∆ is negative:

0 < sX1(X2) + sX2(X1)
= U1

TC11U1 + 2U1
TC10U2 + U2

TC00U2 +O(ε3)
+ U2

TC11U2 + 2U2
TC10U1 + U1

TC00U1 +O(ε3)

= 2U
T

[C11 + C00]U + 2∆T[C11 + C00]∆

+ 2U
T

[C10 + CT

10]U − 2∆T[C10 + CT

10]∆ +O(ε3)
= −8∆TC10∆ +O(ε3) (78)

Equation (77) shows that the relative densities can at least be calculated, as
long as the denominator ∆TC10∆ is nonzero. However, this does not amount
to coexistence when one of the proportions pi is negative. From (76) we see
that coexistence (the positiveness of both p1 and p2) is equivalent to∣∣∣∣∣U

T

C00∆ + U
T

C10∆

∆TC10∆

∣∣∣∣∣ < 1 (79)

To see how likely it is that this inequality is fulfilled, consider the case where
X1,X2 and X∗ are collinear, so U2 = αU1 for some value of α. Typically
residents will be on opposite sides of the singularity (corresponding to a
negative α), although shortly after a branching event we may find them on
the same side (positive α). We see that

E = 2U1
TC10U1

[
1 α
α α2

]
detE∗ = −2U1

TC10U1(α− 1)2 (80)

so there is no unique solution if α is one; T ∗ then lies in the range of E∗ and
the linear system E∗P ∗ = T ∗ is underdetermined. This much was expected
(cf. Fig. 1) since the residents are indistinguishable in this case and coexist at
a neutrally stable equilibrium, their relative abundances dependent on initial
conditions.
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Thus for a nonsingular E∗, the condition for true coexistence is∣∣∣∣1 + α

1− α

∣∣∣∣ < ∣∣∣∣ U1
TC10U1

U1
TC00U1 + U1

TC10U1

∣∣∣∣ =
∣∣∣∣∣∣1 + U1

TC11U1
U1

TC00U1

1− U1
TC11U1

U1
TC00U1

∣∣∣∣∣∣ (81)

By plotting the left hand side of the inequality, we can draw some conclusions.
For two residents to lie on the same side of a singularity (α > 0), it is
necessary that the right hand side of the inequality is larger than one. The
pole at α = 1 shows that the closer two such residents are, the less likely
it is that the condition is satisfied. On the other hand, we see that α = −1
is always a solution, and the closer two residents are to being each other’s
opposite (U1 ≈ −U2), the likelier it is that the condition is fulfilled.

If X∗ is invadable, C00 has positive eigenvalues. We can then choose U1

such that U1
TC00U1 > 0. Moreover, we concluded that U1

TC10U1 is negative
(cf. Eq. (78)), so necessarily the right hand side of Inequality (81) is larger
than one and any α < 0 suffices. If however X∗ is uninvadable, the right
hand side of the inequality is smaller than one and only a narrow interval
around α = −1 will lead to coexistence.

3.6 Limits to the level of local polymorphism

We have solved θ and the proportions P by inverting E∗. To justify this
approach, we show first that by excluding singular matrices E∗, we have only
excluded structurally unstable communities.

Let us first point out that the frame of reference in Propositions 4 and 5
and Lemmata 3–6 below, is the set of all systems in the product of the space
of strategy deviations {U1, U2, . . . , UN} and the space of local equivalence
classes of communities specified by the matrices C11, C10 and C00; within this
context the qualification ‘generically’ must be understood.

Proposition 4 Generically, if the strategies {X∗+εξi | i = 1, 2, . . . , N} can
coexist in the limit ε→ 0, then E∗ is nonsingular.

Proof If E∗ is singular, there exists a nontrivial vector µ such that

(µ1 µ2 · · · µN µN+1)E∗ = 0 T

or in another form {
(µ1 µ2 · · · µN )E = −µN+11

T

(µ1 µ2 · · · µN )1 = 0

If we now apply the equalities 1 = 1 TP and E P = T − θ1 (which we found
for both Lotka-Volterra (40) and physiologically structured models (70)), we
see that

−µN+1 = −µN+11
TP = (µ1 · · ·µN )E P = (µ1 · · ·µN )T

which is generically a contradiction since µ only relates to E∗ whereas T has
no direct connection to E∗ since they depend on different C-matrices that can
be varied independently, by slight changes in the model specification. ut
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We will now formulate some results about the influence of the system
ingredients on the invertibility of E∗ (Lemma 1–4). Proposition 4 then pro-
vides a recipe for translating those results into upper bounds to the possible
complexity of communities (Proposition 5–Lemma 6). Finally, Proposition 7
relates these results to some very general ideas floating around in the litera-
ture about the abstract generalization of the theorem by Levin (1970) that N
limiting resources can robustly support the coexistence of at most N types.

Lemma 1 If detE 6= 0, then det E∗ = −(detE)1 TE−11.

Lemma 2 If rank E 6 N − 2, then E∗ is singular.

Lemma 3 If rank E = N − 1, then generically E∗ is invertible.

Lemma 4 If rank E = N , then generically E∗ is invertible.

The first three lemmata are proven in Appendix D, while the last statement
is verified by a look at Lemma 1 plus the realization that the sum 1 TE−11
of all the elements of the inverse matrix is typically nonzero.

Proposition 5 Generically, the number of residents N near a singularity is
at most one higher than the dimension m of the trait vectors.

This proposition generalizes a result of Christiansen and Loeschke (1987).

Proof First we define an m×N trait matrix U :=
[
U1 U2 · · · UN

]
from the

trait vectors (or componentwise [U]ai := (Ui)a). We then see that E is a
product of matrices,

[E]ij := 2Uj
TC10Ui = [2UTCT

10U]ij

As the rank of a product of matrices is never higher than the rank of any
of its constituent matrices, the rank of E is at least two below maximal if
N > m+ 2, in which case E∗ is not invertible according to Lemma 2 and the
conclusion follows from Proposition 4. ut

Lemma 5 When two resident strategies are linearly dependent on the other
N − 2 in a set of strategies close to a singularity, this set of N strategies
generically cannot coexist.

Proof In this case U has a rank at least two below N , and by Lemma 2 this
holds for E too; applying Proposition 4 concludes the proof. ut

Lemma 6 Near a singularity, the number of residents is generically at most
one higher than the rank of C10.

This is a corollary of Lemma 2 and Proposition 4 as well.

Lemma 7 Even if both U and C10 have full rank, E∗ may still be singular.
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This statement is proven in Appendix D. We remark however that a small
perturbation of U and/or C10 will suffice to make E∗ invertible.

We will now point out in Proposition 7 an indirect connection between
E = 2UTC10U and the dimension of the feedback environment (Meszéna et al.
2006; Dieckmann and Metz 2006). As a corollary, Proposition 5 may be recov-
ered, as at most N types can stably coexist in an N -dimensional environment
(Meszéna and Metz 1999; Meszéna et al. 2006). As a preliminary we show
how to find the exceptions to the rule that Lotka-Volterra models generate
infinite dimensional environments:

Proposition 6 A Lotka-Volterra model with interaction function a(Y ,X)
has feedback dimension e, if and only if e is the minimal number for which
we can write a(Y ,X) =

∑e
q=1 bq(Y )cq(X), for some functions bq and cq.

A proof is given in Appendix E.

Proposition 7 (local environmental dimension) Near singularities, the
environment is locally at most (z+1)-dimensional when the strategies are z-
dimensional.

Proof In this section we showed that an adaptive dynamics model near a
singularity can be approximated, up to quadratic terms, by a Lotka-Volterra
model with any interaction function of the form

a(X∗+ V ,X∗+ U) := 1−U TC11U − 2U TC10V − V TC00V +O(ε3)

and growth rate r(Y ) := 1, where the C-matrices are determined by the
model to be approximated. The fitted model then has the same s-function
as the original model, up to quadratic terms in ε. Making the specific choice

a(X∗+V ,X∗+U) := 1−U TC11U−2U TC10V −V TC00V +U TC11U V TC00V

and using the following definitions,

b0(Y ) := 1− (Y −X∗)TC00(Y −X∗)
c0(X) := 1− (X −X∗)TC11(X −X∗)

∀a ∈ {1, . . . , z} : ba(Y ) := 2
∑

b
[C10]ab(Y −X∗)b

ca(X) := (X −X∗)a

we see that a(Y ,X) =
∑z

a=0 ba(Y )ca(X). Proposition 6 then shows us that
the feedback dimension of the approximating model is at most z + 1. ut

4 The meaning of it all

What is the relation between the canonical equation (Section 2) and the
fitness function near singularities (Section 3)? How can they aid in interpret-
ing a model? Or in other words, why do these sections appear together in
a single paper? We will address these questions here, by describing a recipe
for analysing concrete models and illustrating it with an example from the
literature.
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The starting point should be a model that satisfies the assumptions of
adaptive dynamics: a large system size and a population dynamics where
the individuals have heritable life history parameters that are under evolu-
tionary control through a low rate of mutations with relatively small effect.
In this situation, the ecology typically is dominated by a few, markedly dif-
ferent, strategy vectors. The distribution of the strategies thus has a few
distinct peaks, with almost all individuals having a trait very similar to one
of the peak values. If there are one or two such trait values, for example,
the community is termed quasi-monomorphic or quasi-dimorphic. Interest-
ing evolutionary dynamics are those where the number of peaks increases
over time, as such increasing diversity and specialization has an obvious in-
terpretation as (the onset of) (sym- or parapatric) speciation. Of course, it
is just as important to know when this buildup of diversity does not and/or
cannot occur.

The evolutionary analysis of such a model starts by setting up a resident
population at equilibrium, with all individuals of a single type. Typically the
trait finds itself under directional selection and evolves as predicted by the
canonical equation (23). The community is then quasi-monomorphic at an
evolutionary timescale, as the appearance of a succesful mutant is immedi-
ately followed by the disappearance of the former resident (cf. Section 2.2,
“invasion implies substitution”). This substitutional regime only comes to an
end when the population finds itself near a singular trait value (cf. Introduc-
tion 1.1). Near singular trait values the invasion/replacement dynamics acts
differently with other behaviours possible: resident traits may stop evolving,
or the quasi-monomorphic population may diversify into a quasi-dimorphic
community after a brief polymorphic phase. If we find that the population
does branch into several populations with differing strategies, these branches
must be followed until they go extinct or until they are a safe distance away
from the singularity, so that one knows whether several types of residents co-
exist in a protected manner or whether the polymorphism quickly disappears
again. Once the branches have evolved out of the proximity of the singular-
ity, a canonical equation again governs the evolution of the subpopulation
associated with each branch, and the analysis can proceed as before.

This process is possibly repeated, with further evolutionary branching,
until all branches have reached evolutionary endpoints (i.e., attracting, unin-
vadable trait values): only then a final evolutionary outcome has been found.
In some cases however, evolution does not proceed towards a definite end-
point but ends up on a limit cycle or on a more complicated attractor (e.g.
Dieckmann et al. 1995).

A recipe for studying the evolutionary behaviour of a model, from random
initial resident until the final outcome(s), can be broken down in the following
steps.

4.1 Model (re)formulation

The adaptive dynamics approach requires that the basic model assumptions
are formulated in terms of the behaviour of individuals. These must possess
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near-faithfully inherited traits (Metz et al. 1996) influencing their reproduc-
tion, survival, change in spatial and physiological states, and impact on their
environment. (The environment was introduced in Subsection 1.1 and de-
scribed further in 1.2. It is a concept of which the utility lies in the fact
that in a given environment the growth dynamics of any clone is linear with
an asymptotic relative growth rate depending on both the strategy and the
environment.) Such a description requires i.a. postulates for how individuals
convert resources into offspring (depending on the state and inherited strat-
egy of the organism, and the state of the resources), but also for the dynamics
of the resources consumed by individuals. Therefore the vector of heritable
traits will appear as a parameter of the individual dynamics (and hence of
the population dynamics), and the population distribution will appear as an
input of the environmental dynamics.

4.2 Life history parameters

Once the model is formulated in individual-based terms, the necessary life
history parameters can be calculated: for a resident with strategy X in the
environment I, there is the expected lifetime offspring production L(X, I)
and the feedback matrix G(X, I) (cf. Subsection 1.2), the life expectancy
Ts(X, I) and the average age-at-giving-birth Tf (X, I) (97), the equilibrium
population densities Ts(X, I) ||b|| where b is the birth flow vector (1), and
the offspring variance σ2 (16). Notice that these are all observables, with a
clear biological interpretation.

From Appendix A we know that the invasion fitness of a mutant that
resembles the ith resident type has the following form in general:

sX(Xi + V ) =
log λd(L(Xi + V , IX))

Tf (Xi, IX)
+O(||V ||2)

where λd is the dominant eigenvalue operator. Notice how in this context
one can avoid solving the characteristic equation to find λd(L): the dominant
eigenvalue of L for any resident Xi is necessarily 1. Therefore the right- and
left eigenvectors bi and vT

i of L are the (unique, up to a scalar) solutions
to
[
id − L(Xi, IX)

]
bi = 0 and vT

i

[
id − L(Xi, IX)

]
= 0 T. This allows us to

approximate the ath component of the fitness gradient
(

∂sX(Y )
∂Ya Y =Xi

)T

by

vT
i

[
∂L(Y,IX)

∂Ya Y =Xi

]
bi

/
(Tf vT

ibi). Hence we see that for the fitness gradient we

only have to solve the next-generation and environmental feedback equations
(1) for bi (and L(Xi, IX)), and to find vi.

For each i, the eigenvectors are normalized so that ||ui|| = 1 and 1 = vT
iui

(13). This allows us to calculate Tf (97) and Ts; the life expectancy for
example is

Ts :=
∑

i

ui

∫ ∞

0

Fi(X, I, a) da (82)
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with Fi(X, I, a) the probability that an individual with trait value X and
born in state i, survives to at least age a.

Depending on model type, the previously described steps in the analysis
may be numerical or analytical. Clearly an analytical approach has many
advantages, like showing how life histories depend on strategy parameters.
However, even when this treatment is theoretically possible, it may be so
cumbersome as to be unfeasable: finding the dominant eigenvalue of L where
there are three or four possible birth states would be a case in point.

We remark furthermore that this description of the second step of the
analysis is written so as to be as general as possible. In practice life tends
to be simpler, and often parts of this step may be skipped: e.g., for an ODE
or difference equation model, the population dynamical equilibrium and per
capita growth rate are found directly, making the explicit formulation of
G and L (and its derivatives and eigenvectors) redundant. Furthermore the
community will be starting from a single resident, so that 1 = i = N and the
number of equations to solve simultaneously may be low.

4.3 Monomorphic dynamics under directional selection

The canonical equation (23) predicts how the trait vectors in a community
will change over time. This prediction is valid as long as the fitness gra-
dient stays nonzero, allowing a deterministic approximation of the path a
community will follow from any given initial state. Here we assume that the
mutational covariance matrix is nonsingular. (It may become singular, for ex-
ample when the traits under evolutionary control are subject to constraints.
For trait vectors on the surface that then forms the boundary of the attain-
able trait space, the null space of the covariance matrix is locally orthogonal
to that surface. The equation shows that at equilibrium the fitness gradient
must lie in that null space. This scenario may be treated in the same way as
that of a bounded trait space, discussed below.) From the canonical equa-
tion, we see that a state is transient if the fitness gradient is nonzero. As
it is derived from an approximation that fails in the proximity of singular
points, the canonical equation does not help the analysis close to those inter-
esting points towards which evolution drives the community. Paradoxically,
we will use the (monomorphic) canonical equation to find the strategy values
where it fails as an approximation, and subsequently use the (polymorphic)
equation to predict how the community will evolve around those strategies.

A major exception to the above scenario occurs when the trait space is
bounded in one or more directions. In that case, a distinction must be made
between the dynamics tangential and orthogonal to the boundary. If the
fitness gradient points outward at the boundary, the dynamics orthogonal to
the boundary will trap any approaching community. Hence the analysis can
be continued in a lower-dimensional strategy space, looking for singularities
of the dynamics constrained to the boundary. Some care must be taken if
the fitness gradient points outward only along part of the boundary, as the
community may evolve for a while along the boundary, but later stray away
from it.
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After locating those points where the fitness gradient is zero — the so-
called singular points (1.1) — we can use the canonical equation to find out
whether they are attracting or not, and if so, to find their basin of attraction.
Singular points that are repelling or have inappreciable domains of attraction
are clearly not that interesting, as the community will normally not approach
such points. In principle, the equation can be as rich in dynamical features as
any ODE. As such, the appropriate numerical tools, or theorems about the
number and spacing of solutions, will depend on the specifics of the model
under consideration.

At this point we still lack one ingredient of the canonical equation: the
mutational covariance matrix M(X) near the trait value X (cf. Eq. (2), (23)).
The influence of M can be understood in the following way: selection impels
traits to change in the direction of the steepest increase in fitness, but the
covariances are changing the direction of movement away from this ‘optimal’
direction (Pigliucci 2006). Covariance matrices are the great unknowns in
evolutionary biology. There is little or no understanding of which choices of
M (or, equivalently, of the mutational distribution M) are the reasonable ones
for each type of biological model, as the covariances are footprints of deeper
developmental, physiological and biophysical processes. The safest conclusion
to draw is that any complicated dynamical features found from the canon-
ical equation should be dismissed as biologically irrelevant, unless they are
robust against changes in M. When there is no further information about
it, most people in practice choose M = id, the identity matrix. However, it
is never a bad idea to do simulations for a few other values of M. The best
possible result would then be that one can classify the potential evolution-
ary outcomes as dependent on M. Then the theoretical analysis leads to a
potentially empirically answerable question: “Is M expected to lie in this or
that domain?”.

If we are satisfied that evolution is towards a singularity, whether of the
full trait space or of a constrained subspace, we continue to the next step.
If there is no such singularity, the community will stay monomorphic in-
definitely while the resident trait keeps changing according to the canonical
equation.

4.4 Near singularities

When a resident strategy moves closer and closer to a singularity, the first
order approximation of fitness by the selection gradient breaks down, and
so do a number of other approximations that were made so far. Around a
singularity, several zones can be distinguished in which different refinements
come into play.

In the most convenient (and hence generally emphasized) case, there ex-
ists an outer zone where the second order terms start to dominate the s-
function, while the radius of curvature of the local fitness contours is still
large in comparison with the average mutational step length. We note here
that the existence of such a region depends on the separation of two scales:
that of the distance of the residents from the singular point and that of the
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distance of the mutants from their resident progenitors, where the relative ef-
fects on the two scales have to be gauged through the s-function. Whether or
not the singular point attracts throughout this outer zone can be determined
through recourse to the canonical equation. The only difference with the ear-
lier discussion is that here standard analytic tools from linearized stability
theory can be used, as the second order terms of the invasion fitness function
fully determine the local linearization of the canonical equation. The one snag
is that the canonical equation still contains the mutational covariance matrix.
Leimar (2001, 2005, to appear) analyzed the extent to which the stability of
a singular point can be determined without any knowledge of that matrix. In
this analysis, the eigenvalues of the matrix ∂2sX(Y )/∂Y 2 − ∂2sX(Y )/∂X2

(or C00 − C11 in our earlier notation (26)) play the key role in the classifica-
tion of the evolutionary possibilities relatively close to a singularity X∗. The
possibilities are as follows:

– If C00−C11 is positive definite (i.e., has only strictly positive eigenvalues),
X∗ is repelling. Thus the community can only find itself close to X∗ if the
initial resident was close to X∗ as well. In such cases, the community will
evolve away from the singularity and the canonical equation will quickly
become valid, so that the analysis can proceed in accordance with 4.3.

– If C00−C11 is negative definite (i.e., has only strictly negative eigenvalues),
convergence to X∗ is assured. In this case the next step of this recipe,
Subsection 4.5, applies. Different outcomes are possible, as X∗ may be
an evolutionary endpoint or a branching point.

– If C00 − C11 is indefinite (i.e., has both strictly positive and negative
eigenvalues), the covariance matrix M(X∗) is decisive. Firstly, for a given
M the singularity may be a saddlepoint, so that at first the resident can
approach X∗ but later grow more and more distinct from X∗. Thus the
regime of directional selection stays intact and the analysis of 4.3 applies.
Secondly, for a given M the singularity may be an attractor so that the
analysis can continue at the next step in this analysis. Thirdly, for a
given M the singularity may be a repellor, and hence be disregarded as
unattainable.
The model under consideration may constrain M to one of the three cases
and thus simplify the analysis, or several cases may occur depending on
parameter values.

Closer to the singular point where the curvature of the fitness contours
starts to have its effects, it is also no longer possible to assume permanent
quasi-monomorphism, as it may be that mutants are no longer able to oust
their progenitor. A discussion of the final convergence to an uninvadable
singular point (characterized by C00 being negative definite) under a still
mutation limited regime, can be found in Appendix B of Dieckmann and
Metz (2006). Although the problem of the final convergence is far from solved,
in this case it turns out to be both independent of the mutational covariance
matrix and an all-or-none property. Hence the problem can be solved in
principle by a single extended simulation run, of a type similar to those
described in the next subsection. A final problem is that sufficiently close to
the singular point, the timescale of selective takeovers will in any concrete
case become so slow that the assumption of mutation limitation will break
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down, thus necessitating an approach along the lines of quantitative genetics
(cf. Schneider 2006).

4.5 At attracting singularities

Once we know that the singularity X∗ is an attractor, we can start wondering
whether selection will be stabilizing (so that the resident distribution will
forever have the shape of a single peak close to X∗), or disruptive (so that
distinct (sub)populations may form near X∗ and evolve away from each
other).

When C00 is negative definite then X∗ is uninvadable and selection is
stabilizing close to X∗. Hence the first requirement for branching to occur is
that X∗ must be invadable: C00 must have at least one positive eigenvalue.
If increasingly differentiating polymorphisms indeed do arise, we once again
have to distinguish between the zones discussed in the previous subsection.

For the zone where both the canonical equation and the second order ap-
proximation to the s-function hold, the following conjecture is floating around
(Stefan Geritz, lecture given at the International Conference on Computa-
tional and Mathematical Population Dynamics, Trento 2004): in those cases
where C00 has a simple positive maximal eigenvalue, there will remain only
a single pair of branches if eT

M [C00 + C11]eM > 0, where eM is an eigen-
vector corresponding to the maximal eigenvalue; else all but one branch will
eventually go extinct. When there are two co-maximal positive eigenvalues,
then in principle three branches can grow away from each other at 120 degree
angles, without any two of them driving the remaining third to extinction
(Vukics et al. 2003). But even in the particular case of co-maximality, it ap-
pears that three-way splitting happens only under special conditions. (The
authors welcome any counterexamples!)

As an aside we note that in finite populations, the largest positive eigen-
value of C00 has to be sufficiently large for branching to really occur. More-
over, several other processes may obstruct diversification. Consider for ex-
ample a diploid, sexual organism and assume some diversity has arisen. If a
male and female of differing types mate, their offspring will be of a type close
to the average of the parental types. Hence unless a preference for assorta-
tive mating is present already, sexual reproduction and the recombination it
engenders will tend to average out strategies and thus prevent the buildup
of specialized subpopulations through what could be called the ‘Mendelian
mixer’.

Before we can with some confidence rely on the canonical equation, evo-
lution has to get the resident community out of the region where the radius
of curvature of the local fitness contours is small relative to the average mu-
tational step length. It is in the analysis of what happens in this region that
Section 3 is useful in our recipe: since (up to quadratic terms in the mutation
step size) all models behave as Lotka-Volterra models (28) near singulari-
ties, we can fit such a model and study it instead of the original model.
As explained after Proposition 3 and applied in the Example 4.6 below, to
construct a Lotka-Volterra model with the same N -resident fitness function
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as the model under consideration, we merely have to define the per capita
growth rate in a virgin environment and the interaction function as

∀X,Y : r(Y ) := 1, a(Y ,X) := 1− sX(Y ) (83)

This model is now fitted so as to have the same single-resident fitness function
as the original model, for any combination of resident and invader. As men-
tioned above, Section 3 shows that fitness functions of communities close to a
singularity are model-independent in a sense, so we can proceed our analysis
with either model. Whatever the nature of the original model, the new one is
an ODE model, so a possible advantage is that we can study its dynamics with
standard packages. Furthermore Lotka-Volterra models are mathematically
rather straightforward (e.g. Hofbauer and Sigmund 1998), as for example the
equilibrium population sizes in a community of N types is easily calculated
(Formula 32). Finally, stochastic simulations of their individual-based coun-
terparts are easily performed using the Gillespie (1976) algorithm (see e.g.
the appendix to Dieckmann et al. (1995), and Champagnat et al. (2006)).

To explore the evolutionary behaviour of a system near an invadable
attracting singularity X∗, simulations can be run along the following lines:

1. Choose an initial resident near the singularity: for some small U1, this
resident’s strategy is X1 = X∗+ U1. The resident’s density is set at its
(nontrivial) equilibrium, and the total number N of resident types in the
community is 1.

2. Draw a mutant from the mutational distribution associated with the com-
munity. To do this straightforwardly, we just have to think about the
mutant’s ancestor. If N types are present in the community at densi-
ties n̂i, then with probability pi = n̂i/

∑
j n̂j the mutant derives from

the ith resident. From the mutational step distribution M(Xi) around
this progenitor we draw a mutation step V , generating a mutant of type
Y := Xi + V .
If the invasion fitness of the newly found mutant is negative, we discard it
and draw another mutant according to the above recipe. Once we have a
mutant with positive fitness, we have to see whether it will get established
or not. For this we turn the Wheel of Fortune a second time, where the
chance of success scales with the mutant’s fitness as required by Equality
(21). If our mutant is unlucky, we go back to generating mutants until
one succesfully invades.

3. See which of the original residents survive the invasion of our mutant.
This is done by initializing the Lotka-Volterra ODEs at the community
attractor, adding a small number of invaders — enough to avoid disap-
pearance of the mutants by roundoff errors — and then following the
community dynamics to its new equilibrium.
After the transition from (close to) the equilibrium of the former to that
of the new community, we will usually find that the mutant’s progenitor
has disappeared. In some situations however, several residents may have
disappeared, while in the case of disruptive selection it is possible that no
residents disappear at all. Thus the community X may have lost residents
Xd1 , Xd2 , . . . , Xdk

but gained a new resident XN−k+1 := Y , where the
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Fig. 2 Steps in simulating the evolutionary dynamics close to a singularity.

equilibrium densities are easily found analytically or numerically, using
the interaction function and the resident strategies (cf. Eq. 32).

4. Go back to Step 2, as long as there still are residents in a close neigh-
bourhood of X∗.
In some cases however, the singularity is invadable but does not allow
a polymorphism to build up. This happens when the zone of mutual
invadability (and hence stable coexistence) is so narrow that a mutant will
be outside of this area after very few mutation steps, and therefore drive
all close by residents to extinction. The trajectory will then hover close to
the singularity, while neither really closing in on X∗ nor branching. Thus,
if any polymorphism in the community only remains for a brief period
while the trajectory makes no progress towards the nearby singularity
within a reasonable time, the algorithm must be interrupted and X∗ be
proclaimed an evolutionary endpoint.

At the last step, there is no hard and fast rule to work out what a safe
distance is for concluding that all branches present have evolved away from
the proximity of the singularity. Out of hand, we would say ten mutation
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steps. The underlying idea is that away from a singularity, the “invasion
implies substitution” dictum holds sway for each of the separate branches,
so we can be confident that no buildup of diversity is possible beyond our
chosen boundary. Similarly, what constitutes a ‘reasonable time’ at Step 2
is not exactly defined; we would call it a day when a thousand successive
mutants fail to invade. Given these inexactitudes, it is clear that our story
relies on the common sense of the programmer. A summary of the algorithm
as a flow diagram is given in Fig. 2.

If we are convinced there is no diversification occurring while the resident
creeps ever closer to X∗, we label this strategy an evolutionary endpoint. If
on the other hand branching has occurred, then the branches come under a
regime of directional selection once they have outgrown the influence of X∗.
Thus we find ourselves back at Subsection 4.3 to repeat the entire analy-
sis, this time in a more complicated fashion since equilibria of the canonical
equation for several residents have to be found, and equilibria of a commu-
nity dynamics with several residents. The invasion analysis, however, keeps
studying the singular points separately, with the other (faraway) strategists
being part of the background that determines part of the environment I
when examining the evolution of a resident.

To illustrate our recipe, we conclude with an example from the literature.

4.6 A fitting example

As an example we consider a one-locus model for intraspecific competition
(Christiansen and Loeschke 1987). Diploid additive genetics is assumed in
a discrete time, non-overlapping generations analogue to Lotka-Volterra dy-
namics. There are multiple resources, and the trait under evolutionary control
is the modus of the utilization function:

– Resources are distributed as a z-variate Gaussian with mean 0 and co-
variance matrix Ψ, where Ψ is real, symmetric and positive definite.

– Each existing allele Ai ∈ {A1, A2, . . . , AN} has a trait value Xi associ-
ated with it, such that for a diploid with genotype (Ai, Aj), the optimal
resource type is Dij := D + Xi + Xj and the diploid has a Gaussian re-
source utilization function Uij(r) := α exp

(
− 1

2 (Dij − r)TΦ−1(Dij − r)
)
.

The scaling constants α and D, and the symmetrical, positive definite co-
variance matrix Φ are shared by all genotypes.
Diploid individuals (Ai, Aj) and (Ak, Al) interact through the competi-
tion coefficient γij,kl := exp

(
− 1

4 (Dij −Dkl)TΦ−1(Dij −Dkl)
)

while the
carrying capacity is given as kij := exp

(
− 1

2DT

ij [Φ + Ψ]−1Dij

)
.

Genotypes are formed by random mating under free recombination. Between
generations, a genotype (Ai, Aj) changes in abundance as

nij(t+ 1) = nij(t)

(
1 + β

(
kij −

∑
kl

γij,kl nkl(t)
))

(84)

for some scaling constant β.
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For an adaptive dynamics analysis of this model, it is important to realize
at this point that the alleles, not the diploids, are the individuals to consider.
This is seen by contemplating who is faithfully replicating (Metz et al. 1996)
in this community: in the extreme situation where the population is made
up of homozygotes (A1, A1) and (A2, A2), half of the offspring is of a brand
new type so that the heterozygote per capita growth rate is infinite.

We can now interpret the model ingredients in an adaptive dynamics con-
text. Firstly, the strategy of an allele Ai is the allelic trait value Xi associated
with it. Secondly, for a rare allele Aj that is introduced in this monomorphic
community, the number of alleles Aj is actually nij as mutant homozygotes
are exceedingly rare. Thus we find the one-resident invasion fitness (i.e., the
per capita growth rate of a rare mutant in a monomorphic equilibrium com-
munity) as the logarithm of the mutant heterozygote’s growth rate. From
these considerations plus the model ingredients and Equation (84), we see
that

sX(Y )= log
(
1 + β e−

1
2 (D+X+Y )T[Φ+Ψ]−1(D+X+Y )

− β e−
1
2 (D+2X)T[Φ+Ψ]−1(D+2X) e−

1
4 (X−Y )TΦ−1(X−Y )

)
(85)

From the selection gradient(
∂sX(Y )
∂Y Y =X

)T

= −β e− 1
2 (D+2X)T[Φ+Ψ]−1(D+2X) [Φ + Ψ]−1(D + 2X) (86)

we see that the unique singularity lies at X∗ := −D/2, so we translate the
origin of our coordinate system to X∗ and use the (not necessarily small)
strategy difference vectors U := D/2 + X and V := D/2 + Y .

The singularity is globally attracting, as can be seen in the following way.
First we note that the inverse of the sum of real, positive definite, symmetric
matrices has these three properties as well, so that 0 < XT[Φ + Ψ]−1X for
any nontrivial vector X. If we look at the canonical equation (23), we see
that it predicts the resident trait to change according to

dX

dt
= α(X)M(X)

∂sX(Y )
∂Y

T

Y =X

=: f(X) (87)

for some positive function α(X). Considering only small mutations in the
direction of the singularity (i.e., V := (1 − γ)U with γ > 0 and V − U =
O(ε)), we see that such a mutant has positive fitness, while a step away from
the singularity (γ < 0) implies negative fitness:

sX∗+U (X∗ + V ) = 0 +
∂sX(Y )
∂Y Y =X∗+U

(−γU) +O(ε2)

= 2β γ e−2UT[Φ+Ψ]−1U U T[Φ + Ψ]−1U +O(ε2) > 0 (88)

Therefore the singularity can be surrounded by surfaces of equal fitness, with
the fitness gradient directed inward at every point. Small surprise therefore
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that L(X) := XT[Φ + Ψ]−1X is a Lyapunov function: it is positive, contin-
uously differentiable and for every nontrivial U

∇L(U) f(X∗+ U) = −α2(X∗+ U) U T[Φ + Ψ]−1M [Φ + Ψ]−1U < 0 (89)

where α2 is a positive function.
That the singularity X∗ is globally attracting means that from any start-

ing point in the trait space, the most likely path will bring the resident to
the singularity, but there may be a negligible set of paths that lead away
from the singularity. In our case we can actually show that such paths do
not exist in the neighbourhood of X∗, since the final convergence of U to
0 is assured. To prove this, we note that the total derivative of the fitness
gradient (86), d

(
∂sX(Y )/∂Y

)T
/dX = C00 + C10, is the symmetric, negative

definite matrix −2β[Φ+Ψ]−1. By evaluating the quadratic s-function (34) at
V = U, we know that in general C11 +C10 +CT

10 +C00 = 0. So it follows that
the matrix C00 − C11 = 2C00 + 2C10 is negative definite and thus Subsection
4.4 tells us that convergence of X to X∗ is locally guaranteed.

We draw attention here to the fact that C10 is symmetric, as often happens
in simple models (cf. the paragraph following Equation (33)).

As the sign of sX(Y ) is not influenced by the value of β > 0, we can put
this proportionality constant at β := 1. For strategies close to the singularity,
where U and V are O(ε), we approximate the invasion fitness function as

sX∗+U (X∗+ V )

= log
(
1 + e−

1
2 (U+V )T[Φ+Ψ]−1(U+V ) − e−2UT[Φ+Ψ]−1U e−

1
4 (U−V )TΦ−1(U−V )

)
= U T

[
3
2
[Φ + Ψ]−1 +

1
4
Φ−1

]
U + 2U T

[
−1

2
[Φ + Ψ]−1 − 1

4
Φ−1

]
V

+ V T

[
−1

2
[Φ + Ψ]−1 +

1
4
Φ−1

]
V +O(ε3) (90)

from which form we can read off C11, C10 and C00.
In the case of scalar traits, the invadability of X∗ now settles the rest:

if 0 < C00 we find a branching point, else a CSS. The first case corresponds
to Φ < Ψ, the second to the reverse. This is the classical result that for
branching to occur, the resource utilization kernel must be narrower than
the resource abundance spectrum (Christiansen 1991).

In the case of vectorial traits, X∗ is an evolutionary endpoint if C00 is
negative (semi)definite, and a branching point if C00 is positive (semi)definite.
In Appendix G we show that C00 is positive definite if and only if Ψ− Φ is
positive definite, and that the same holds for indefiniteness, (non)negative
and nonpositive definiteness. Hence a similar result holds for the relation
between resource utilization kernel and resource abundance spectrum as in
the scalar case. However, that C00 has a single positive eigenvalue is not
sufficient for branching, as a protected polymorphism is not guaranteed to
arise. Even if it does arise, the region of coexistence may be so narrow that
the dimorphic population quickly strays out of it.

In the case where C00 has both positive and negative eigenvalues, we
should resort to the algorithm suggested in Figure 2 and use a Lotka-Volterra
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model to simulate the evolutionary dynamics. This is a valid approach, since
the dynamics (up to O(ε3)) of the proportions pi are identical in all mod-
els with the same single-resident fitness function, as argued in Appendix F:
two different community dynamics that yield the same one-resident fitness
functions up to terms of order O(ε3) will arrive at an equilibrium with the
same set of types surviving, whenever they start with the same N -resident
community at equilibrium plus the same invader at a low density. Therefore,
instead of the original discrete time equations (84) for diploids, we switch to
a Lotka-Volterra system that has a sign-equivalent fitness function for any
community of alleles, up to terms of order O(ε3). If alleles with trait val-
ues X∗+ U1, X∗+ U2, . . . , X∗+ UN are present in the community, their
respective densities change over time as

d log ni

dt
= 1−

∑
j

(Uj
TC11Uj + 2Uj

TC10Ui + Ui
TC00Ui)nj

from which we can calculate the equilibrium densities of the residents. Con-
sequently, the initial conditions for an invasion event consist of the resident
community at this attractor in addition to an invading allele, with associated
trait vector X∗ + V , at a very small density. By running the population dy-
namical equations with N + 1 types present, we get to know the fate of the
invader and all the resident types.

However, where do the invaders come from? At this point, we have to
postulate a mutational process, as there is none given by Christiansen and
Loeschke (1987). Then we can follow the algorithm given in Section 4.1, which
involves generating a new mutant after each invasion attempt and running a
similar invasion experiment, with the surviving community as initial condi-
tion. This is repeated until the branches have escaped the close proximity of
the singularity and we are satisfied that the polymorphism is either protected
or unstable.

As an example, using the notations ∆ := (U1 − U2)/2 and U := (U1 +
U2)/2, we turn to Equation (27) which approximates the invasion function
for dimorphic communities with both residents near a singularity X∗:

sX1,X2(X
∗+ V ) = V TC00V + 2U

T

C10V + U
T

C11U −∆TC00∆

+ 2∆TC10(U − V )
∆T[C00 + CT

10]U
∆TC10∆

+O(ε2)

Note that at the singularity, sX∗(X∗ + V ) = V TC00V so mutants in the
direction of the largest (positive) eigenvalue of C00 have the highest proba-
bility of invading. When branching indeed occurs, there are almost always
two branches on opposite sides of the singularity that move at the same pace
in opposite directions, along the steepest fitness gradient (cf. 4.5). Approxi-
mating this situation by U1 = −U2, we have U = 0 and ∆ = U1 and find
ourselves in the special case

sX∗+U1,X∗+U2(X
∗ + V ) = V TC00V −UT

1C00U1 +O(ε3)
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in which any more extreme mutant (V := αU1 with |α| > 1) can invade and
replace its ancestor, while α < 1 implies negative fitness. This shows that
branches initially indeed grow away from the singularity.

If we are convinced that branching indeed does occur (either from a sim-
ulation as described above or because C00 is positive definite), one starts by
formulating the two-resident fitness function

sX∗+U1,X∗+U2(X
∗ + U3)

= log
(

max
j=1,2

(
1 + β

(
kj3 − γj3,11n̂11 − γj3,12n̂12 − γj3,22n̂22

)))
(91)

where the equilibrium densities are calculated fromk11

k12

k22

 =

 1 γ γ4

γ 1 γ
γ4 γ 1

 n̂11

n̂12

n̂22

 (92)

with γ := exp
(
− 1

4 (U1 −U2)TΦ−1(U1 −U2)
)
.

If the traits are scalar, we can calculate from the above expression (92)
the X1-isocline defined by ∂sX1,X2 (Y )

∂Y
Y =X1

= 0, and the similarly defined

X2-isocline. These allow trait evolution plots (TEPs) to be drawn, which are
basically pairwise invasibility plots (PIPs) with added information related to
the s-function of dimorphic communities. For an easy explanation on how
to plot and interpret PIPs consult Diekmann (2004), for examples of TEPs
with some explanations including properties of the isoclines see Geritz et al.
(1999). The usefulness of TEPs lies in the fact that one can tell from them at a
glance whether the community will evolve towards the edge of the coexistence
region (so that the community reverts to a monomorphic state), towards the
edge of the trait space (an evolutionary endpoint) or towards a singularity
(with a possibility for secondary branching where the same analysis as before
applies again).

5 Discussion

While superficially the first two parts of this paper are wildly disparate, we
hope that the last part has shown their fundamental connexion by addressing
one of the open problems the evolutionary biologist faces, namely how to
systematically treat long-term evolutionary behaviour.

To the more mathematically inclined, Section 3 shows that classifying the
bifurcation patterns that the s-functions of quadratic Lotka-Volterra models
can exhibit is not just a niche hobby, but in the case of codimension-1 sin-
gularities amounts to a full classification of these singularities for models of
evolution driven by small mutations. Furthermore we have revealed how the
local geometry of coexistence (3.5, 3.6) and the residents’ proportional den-
sity dynamics (Appendix F) are model independent (up to a given order), in
the sense that they only depend on the geometry of the one-resident fitness
function near the singularity and on the strategies present in the community.
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To the more biologically inclined, Section 4 gives a handle on the system-
atic analysis of concrete evolutionary models from scratch. The approach can
also prove useful in the interpretation of any odd pattern one has encoun-
tered, by showing a straightforward way to explore the geometry close to
the location of the oddity and hence to figure out what model features cause
the pattern. The approach on the whole allows the reader to focus on the
phenomena at hand instead of the specific mathematical problems that are
encountered: as models are shown to be interchangeable in some ways, com-
putational difficulties may be avoided e.g. by switching between continuous
and discrete time versions of a model, or a similar sleight of hand.

The biologist will note how similar the canonical equation is to Lande’s
equation (Lande 1979) which in turn derives from the breeder’s equation
(Lush 1937) in the animal sciences. Except for the population density which
does not appear in Lande’s equation as a factor, all visible differences with the
canonical equation amount to differences in the interpretation of parameters.
Where they differ is in interpretation, as Lande’s equation describes changes
in the genetical makeup of a population through selection on standing genetic
variation. This variation can for example be accumulated in a population near
to a (weak) optimal strategy in a stable environment. Some have cast doubts
on the sufficience of the mutation/selection balance for the generation of
the observed levels of variation (e.g. Turelli (1984); Kondrashov and Turelli
(1992)), though our feeling is that the associated problems are of greater
mathematical than biological interest (see Zhang and Hill (2005) for some
mathematical counterarguments). Changing the environmental parameters
that a population close to an evolutionary optimum is subjected to, leads to
a rapid evolution in the genetical makeup. However, Haldane (1927) already
realized that in the next phase, true innovations and long-term changes must
come from mutations. He also made plain that mutation limited evolution
is a slower process than naive analytical models would suggest since most
advantageous mutants will fail to establish themselves due to stochasticity,
an effect that is quantitatively captured by Ewens’ approximation (14) of
the establishment probability. The canonical equation builds on those ideas
to derive a quantitative relation between the factors involved, establishing in
particular how the ecology determines the selective pressures. The extended
form presented in Section 2 is applicable to a very wide variety of discrete
and continuous time models, instead of only to ODE models as is the original
version by Dieckmann and Law (1996).

The analysis as presented in Sections 2 and 3 is ready for extension in
several directions. In terms of content, the third order terms of the normal
form (27), (42) should be worked out and compared between the different
model types. While they do show differences, it is not yet clear to the au-
thors whether those are substantial enough to translate into differences in
bifurcation patterns.

In terms of rigour, we note that the calculations are presented in a heuris-
tic and biologically slanted manner, at a cost to mathematical precision and
exhaustiveness. We have followed most of the biological literature by treating
mutations as unbiased, as if tacitly assuming the genotype-phenotype map
to be linear and mutations to be unbiased at the genotype level. Since we
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are treating exceedingly small mutation steps, the mapping is indeed linear,
but the possibility of bias remains (cf. Dieckmann and Law 1996). A dis-
cussion of this topic can be found in the more mathematical treatment of
the canonical equation by Champagnat et al. (2001, 2006) and Champagnat
(2006). A far more complicated issue is the one underlying timescale sepa-
ration and the several latent limits (of system size, mutation step size and
mutation probability) which are not commutative, as Metz et al. (1996) ex-
plained. How quasi-monomorphicity (and by extension, quasi-N -morphicity)
is maintained under some not-too-restrictive assumptions is being addressed
more recently (e.g. Cressman and Hofbauer 2005; Meszéna et al. 2005). More
specifically, the latter authors show for general ODE population models with
small differences between the types, that away from evolutionary singular-
ities the dynamics of the relative frequencies pi follows (up to the lowest
order of approximation) the familiar population genetics equations for the
density independent case. Furthermore they show that near singularities the
dynamics mimics that of Lotka-Volterra models, with fitnesses approximated
along the same lines as in this paper.

In terms of applicability, the collection of models covered should be ex-
tended to physiologically structured populations with infinite numbers of
birth states. Biologically this is a small step, for example not just allowing
a few classes of birth weights but allowing a continuum of sizes at birth.
Mathematically however, this means that the matrix operations of Section 3
should be rewritten in terms of operators and norms, which we happily leave
as a problem for more accomplished nonlinear analysts. Additionally, this
requires an extension of Equality (14) to branching processes with infinitely
many types, where the d-type version was provided by Athreya (1993) and
Eshel (1984).

In continuous time, the extension to infinite numbers of birth states would
automatically remove our restriction to fixed point attractors, as individuals
born in a community on a periodic attractor can be assigned the phase of the
attractor as (a component of) their birth state. Thus the attractor can be in-
terpreted as a fixed point attractor and all analysis goes through. (In discrete
time this trick does not even require the suggested extension.) Analytically,
we have no clear idea how to extend our treatment to nonperiodic attractors.
Heuristic explorations by Dieckmann (pers. comm.) for ergodically fluctuat-
ing environments with linear birth-and-death population dynamics for the
invaders, suggest that the canonical equation is robust against such exten-
sion: by approximating the fixation probabilities as calculated by Kendall
(1948), it is found that the establishment probability is still approximately
proportional to the fitness (cf. Relation (20)).

The analysis of this paper is valid for models where the population is
spread over a finite number of patches, as long as the local resident densities
are large enough to ensure local infinite dilution of individual effects and a
boundary process approximation for the initial phase of the invasion process.
The patch an individual inhabits is then expressed in a component of its
(birth) state. More research is badly needed on more complicated spatial
models to see under which conditions the probability of establishment scales
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linearly with changes in strategy, as then an equation similar to the canonical
equation will apply.
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Meszéna, G., Gyllenberg, M., Jacobs, F., and Metz, J. 2005. Link between popula-

tion dynamics and dynamics of darwinian evolution. Physical Review Letters
95 (078105):1–4.
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A The relationship between sX(Y ) and R0. I. Away from
singularities

To derive a relationship between the N -resident invasion fitness sX(Xi + V ) and
the lifetime offspring production R0, we define φ as

φ(ρ, V ) := log

„
λd

„Z ∞

0

e−ρaΛ(Xi + V , IX, da)

««
(93)

where Λ is the birth kernel (see Eq. (18) and preceding lines). Then the invasion
fitness of a mutant Xi+V in a given community X is the (generally unique) solution
ρ to φ(ρ, V ) = 0 (known as the Euler-Lotka equation (18)).

We can expand φ as a function of its first argument,

φ(ρ, V ) = φ(0, V ) + f(V )ρ + O(ρ2) (94)

As ∂φ(ρ, V )/∂ρ is (generically, in the space of all models that allow a birth kernel
notation (93)) nonzero, the implicit function theorem may be applied to ρ. Hence
we can furthermore expand s as a function of V , where the constant term is zero
since residents have zero fitness. Thus

0 = φ(sX(Xi + V ), V )

= φ(0, V ) + f(V ) sX(Xi + V ) + O(sX(Xi + V )2)

= log R0 + f0 sX(Xi + V ) + O(||V ||2) (95)

where we have used the fact that φ(0, V ) = log λd(L(Xi + V , IX)) = log R0, and
f(V ) was replaced by its the lowest order part f0 := f(0 ). To calculate f0, observe
that it is a partial derivative of φ for ρ at 0:

f0 =
∂φ(0,0 )

∂ρ
=

1

λd

`R∞
0

Λ(Xi, IX, da)
´ ∂

∂ρ
λd

`R∞
0

e−ρaΛ(Xi, IX, da)
´

ρ=0

Since Xi is a resident, the first factor is one. The last factor can be resolved, as
derivatives of simple eigenvalue λ(x) of a matrix M(x) are found from

∂λ(x0)

∂x
= vT ∂M(x0)

∂x
u (96)

where u and vT are respectively right- and left eigenvectors of M(x0), normal-
ized such that vTu = 1 (e.g. Magnus and Neudecker 1988; Caswell 2001). AsR∞
0

e−ρaΛ(Xi, IX, da) is nonnegative and primitive so that λd is an isolated eigen-
value, we use this last result to decide that

f0 =
∂λd

`R∞
0

e−ρaΛ(Xi, IX, da)
´

∂ρ ρ=0

= vT

 
∂
R∞
0

e−ρaΛ(Xi, IX, da)

∂ρ ρ=0

!
u

= −vT

„Z ∞

0

a Λ(Xi, IX, da)

«
u =: −Tf (Xi, IX) (97)

where u and vT now are normalized right- and left eigenvectors of L(Xi, IX) (cf.
Eq. (13)). The (nonzero) quantity Tf has a natural interpretation as the average
age at giving birth, since the integral is a lifetime census of the parent’s age at each
birth event while the expected lifetime offspring production is one (as Xi ∈ X).
Substituting this value for f0 into our expansion (95), we conclude that

sX(Xi + V ) =
log R0(Xi + V , IX)

Tf (Xi, IX)
+ O(||V ||2)
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B The relationship between sX(Y ) and R0. II. Near singularities

In Appendix A, a relationship between invasion fitness and lifetime reproductive
output was formulated, up to O(ε2) = O(||V ||2). Near a singularity however, we
can redo the analysis to show that the approximate relation is correct up to terms
of order O(ε3).

When all residents are close to a singular strategy X∗, we can describe the
community in terms of strategy deviations ξi and a scaling factor ε as X := {X∗+
ε ξi

˛̨
i 6 N}. We expand the multiresident fitness function as dependent on the

mutation step V and the community scaling factor ε as

sX(X∗+ V ) = sX∗(X∗) + β V + εB(ξ1, . . . , ξN ) + O(||V ||2, ||V ||ε, ε2) (98)

The constant term is necessarily zero, and β too since sX(Y ) = sX∗(Y ) at ε = 0.
Furthermore, any resident strategy is a zero of the N -resident fitness function, so
we find from any choice V = ε ξi that B(ξ1, . . . , ξN ) is zero as well. Thus for any
mutant X∗+ V where V = O(ε), we have that

sX(X∗+ V ) = O(ε2) (99)

When we define

φ(ρ, V ) := log

„
λd

„Z ∞

0

e−ρaΛ(X∗+ V , IX, da)

««
(100)

we may expand this φ again as a function of ρ and thus solve the Euler-Lotka
equation φ(ρ, V ) = 0 for V = O(ε) as

0 = φ(sX(X∗+ V ), V )

= φ(0, V ) + f(V ) sX(X∗+ V ) + O(sX(X∗+ V )2)

= log R0(X
∗+ V , IX) + f0 sX(X∗+ V ) + O(ε3) (101)

where f0 := f(0 ) = −Tf (X∗, I∗) =: −T ∗f , as shown at Eq. (97). Hence we conclude
that

sX(X∗+ V ) =
log R0(X

∗+ V , IX)

T ∗f
+ O(ε3)

for communities and mutants near a singularity X∗.

C Miscalculating sX(Y )

Let us consider a singular strategy X∗, and try to express the s-function in case
there are N resident strategies close to X∗. For each i from 1 to N , we can express
resident trait values as Xi = X∗+ Ui for some small vector Ui, and similarly for
invading mutants Y = X∗+ V . We now take the Taylor expansion around X∗ up
to quadratic terms, and can start to figure out the coefficients:

sX1...XN (Y ) = α + β V +
X

i

βi Ui + V TC00V

+ 2
X

i

Ui
TCi0V +

X
ij

Ui
TCijUj + O(ε3)

where C00 and each matrix Cii is taken to be symmetric.
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Any resident has zero growth in an equilibrium population, so for each k we
have the consistency condition sX1...XN (Xk) = 0. Thus for all k we must have that

0 = α + β Uk +
X

i

βi Ui + Uk
TC00Uk + 2

X
i

Ui
TCi0Uk +

X
ij

Ui
TCijUj + O(ε3)

As this has to hold independently of the strategy deviations U1 to UN , we can split
the equation into several equations like

0 = α + (β + βk) Uk +
X

i6=k
βi Ui (102)

0 = Uk
T (C00 + 2Ck0 + Ckk) Uk (103)

0 =
X

i6=k
Ui

T
`
2Ci0 + CT

ki + Cik

´
Uk (104)

0 =
X

i,j 6=k
Ui

TCijUj (105)

Equation (102) shows that α = 0, and for each i 6= k we see βi = 0 T while βk = −β.
So if we first choose k = 1 and then k = 2, we conclude that for all the residents
β = βi = 0 T. Note that in the monomorphic case, this argumentation does not
hold as k = 2 is impossible then.

We deduce from Equality (105) that Cij = 0, if both i and j differ from k. So
taking an initial choice of k = 1 shows that all Cij are zero except if i or j is one,
and a further choice of k = 2 shows that all are zero except C12 and C21. If N > 2,
we can take k = 3 to prove that for any i and j the matrix Cij is zero. The case
N = 2 is worked out below, where C12 and C21 may be nonzero.

For N > 2 we substitute our results into Equation (104) and see in a similar
way that Ci0 = 0 for any i. From Equation (103) we deduce that the symmetric
matrix C00 is zero as well. Hence we conclude that for any model where N > 2

sX1...XN (Y ) = 0 + O(ε3)

which is clearly false. (By repeating the argumentation for higher order terms we
can ‘show’ that sX1...XN (Y ) = O(εM+1) when N > M .) The false result can be
traced back to one implicit assumption: the existence of partial derivatives, a basic
requirement for the applicability of Taylor approximations.

For N = 2 we find that C10 + CT
10 = −C00 = C20 + CT

20 and 2C10 = 2CT
20 =

−[C12 + CT
21], so that

sX1X2(Y ) = (V −U1)
T[C12 + CT

21](V −U2) + O(ε3)

This equation suggests that the s-function for any two resident model would be
locally quadratic at X∗. If one compares this equation to the correct solution in
this paper (27), we see that it is correct only if we are dealing with scalar strategies.

D Proofs of Lemma 1–3 and 7

The following lemmata were mentioned without proof in Section 3.6. They are
useful in making some points about upper bounds to the number of types that can
locally coexist. The (non)invertibility of E∗ plays a central role in this issue, not
just because our route to calculating the multiresident fitness function depends on
the invertibility of E∗ (72), but because invertibility is a necessary condition for the
population dynamical stability of the community. Since the proofs are of a technical
nature, they were moved to this appendix, as they merely divert the attention from
the real issues in Section 3.6.

Lemma 1 If det E 6= 0, then det E∗ = −(detE)1 TE−11.



61

Proof We start by recalling the general formula for the inverse of a nonsingular
N ×N matrix:

(detE)E−1 =

264 (−1)1+1e1,1 · · · (−1)1+NeN,1
...

. . .
...

(−1)N+1e1,N · · · (−1)N+NeN,N

375
where the minor ei,j is defined as the determinant of the matrix obtained by deleting
the ith row and jth column of E.

We encounter the same minors, when we calculate the determinant of E∗ by
expanding first from the bottom row and then from the rightmost column:

det E∗ =
X

j

(−1)N+1+j det

264 E1,1 · · · E1,j−1 E1,j+1 · · · E1,N 1
...

. . .
...

...
. . .

...
...

EN,1 · · · EN,j−1 EN,j+1 · · · EN,N 1

375

=
X
ij

(−1)N+1+j(−1)N+i det

2666666664

E1,1 · · · E1,j−1 E1,j+1 · · · E1,N

...
. . .

...
...

. . .
...

Ei−1,1 · · · Ei−1,j−1 Ei−1,j+1 · · · Ei−1,N

Ei+1,1 · · · Ei+1,j−1 Ei+1,j+1 · · · Ei+1,N

...
. . .

...
...

. . .
...

EN,1 · · · EN,j−1 EN,j+1 · · · EN,N

3777777775
=
X
ij

(−1)i+j+1ei,j

= − (detE)1 TE−11 ut

Lemma 2 If rank E 6 N − 2, then E∗ is singular.

Proof If the rank of E is N − 2 or less, we can transform it by elementary row
operations into an N × N matrix with the last two rows equal to zero. After
applying the same sequence of elementary operations to E∗ instead, one of its last
two rows is a multiple of the other (since only their last coefficients possibly differ
from zero). Thus E∗ is singular since the determinant is not affected by elementary
row operations. ut

Lemma 3 If rank E = N − 1, then generically E∗ is invertible.

Proof (by contradiction) If E∗ is singular, there exists a nontrivial vector µ such
that the N + 1 equations (µ1 µ2 · · · µN+1) E∗ = 0 T are simultaneously satisfied.

If µN+1 = 0, then µ is the unique (up to a scalar) nonzero vector such that
(µ1 µ2 · · · µN ) E = 0 T, where uniqueness comes from the rank of E. This situation
is nongeneric as the independent (N + 1)st equation

P
i µi = 0 is satified as well.

If on the other hand µN+1 6= 0, we rescale µ by setting µN+1 := −1, thus
finding a solution to the N equations (µ1 µ2 · · · µN ) E = 1 T. Generically such a
solution does not exist however, as E has an (N − 1)-dimensional range. ut

Lemma 7 Even if both U and C10 have full rank, E∗ can still be singular. In fact,
all four combinations of invertible or singular E and E∗ can occur.

Proof Only in cases where N = m we know offhand whether E = UTC10U is
singular or not, as the determinant of a matrix product is the product of the
determinants.
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As an example of the case that both E and E∗ are singular, consider

[U1 U2 U3 U4 ] :=

264 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

375 C10 :=

264 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

375
We see that for any combination of two residents, both U and C10 have full rank
(respectively two and four). For two out of the six possible combinations (namely
{U1, U4} and {U2, U3}), both E and E∗ are invertible. But for the other four
pairs of residents (namely {U1, U2}, {U1, U3}, {U2, U4} and {U3, U4}), matrix E
has rank zero and E∗ is singular, so that such strategy couples cannot coexist: if
[C00]ii 6= [C00]jj , the system E P = T (70) is contradictory; if [C00]ii = [C00]jj ,
there is a continuum of neutrally stable solutions.

If we add any of the remaining two as a third resident type, coexistence becomes
possible again as E∗ is invertible (but E is singular). Notice that Ti := −Ui

TC00Ui =
−[C00]ii, so that there is no a priori relation whatsoever between the vector T
and the matrix E. If we consider the community {U1, U2, U3} for example, the
proportions p1, p2, p3 will respectively be 1 + 2T1 − T2 − T3, T3 − T1 and T2 − T1.
Values of T that result in strictly positive proportion vectors are (1/4 1/2 1/2)T

or (−1/2 − 1/3 − 1/6)T. Similarly, there are generic solutions with all four given
strategies present.

Considering another possible resident, U0
T := (1 0 0 1), we encounter the fourth

possibility, as the resident duo {U1, U0} has a singular E∗ matrix yet E =

»
0 1
1 2

–
is invertible. ut

E The environmental dimension and finite dimensional
Lotka-Volterra environments

We will first precisely define the environmental dimension, as relevant in an evo-
lutionary context and differing from the dimension concept used in physiologically
structured models. In such models, the environment is used to describe the full
population dynamics. In the adaptive dynamics context however, the interest is
reduced to a time-averaged growth rate of an individual in that environment (as
testified by the definition of invasion fitness). Moreover, it is not the environments
themselves that are of central concern here, but the collection of ergodic probability
measures on functions that map time to environments.

A closer consideration of this topic reveals there is an observability issue.
Whether for reasons of didactical clearness, mathematical manipulability, inter-
pretability or ineptitude, the environment will not always be formulated in a min-
imal form. In addition one must realize that not the dimension of the set of envi-
ronments is relevant, but the dimension of the subspace of feasible environments.

To do away with these potential deficiencies, we use the following definitions.
For the set of all environments I and the trait space X, we define the growth operator
as

ρ : I → C(X) (106)

such that ρ(I)(Y ) is the instantaneous per capita growth rate of a given type Y
in a given environment I, as dependent on the model under consideration. In this
setting we define the environmental dimension of that model as

dimE := dim ρ(I) (107)

From the definition we straightforwardly see why Lotka-Volterra type models
by default have infinite dimensional environments, as opposed to e.g. resource dy-
namics models (cf. Eq. (116)):
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Lemma 8 Generically, the environment of a Lotka-Volterra model is infinite di-
mensional.

Proof Let us consider a strategy space X with an infinite number of elements. Using
the growth operator (106), for an N -resident Lotka-Volterra model (28) we formally
have that

ρ(I)(Y ) = r(Y )

 
1−

X
i

a(Y , Xi)ni

!

or for more general Lotka-Volterra models

ρ(I)(Y ) = r(Y )

„
1−

Z
X

a(Y , X) dν(X)

«
where N -resident models are made by taking the population distribution ν to be a
weighted sum of N Dirac delta distributions ν(X) :=

P
j njδ(X −Xj).

To separate the focal individual Y from the environment I, we have to define
the environment as (something isomorphic to) the real-valued function

I : Y ′ 7→
Z

X

a(Y ′, X) dν(X) (108)

Now the growth rate can indeed be put in the form ρ(I)(Y ), with I independent
of Y . Thus we see that the dimension of I is at most the cardinality of X.

As there is no a priori reason for a smaller set than X to suffice as domain for
a function similar to Expression (108), generically I is infinite dimensional. ut

Proposition 6 A Lotka-Volterra model with interaction function a(Y , X) has fi-
nite feedback dimension e, if and only if e is the minimal number for which there
exist functions bq and cq such that a(Y, X) =

Pe
q=1 bq(Y )cq(X).

Proof Firstly, by Definition (107) we have

e := dim ρ(I) = dimA(D) (109)

where D is the space of all Borel measures on X and the operator A is defined as

A(ν) : Y 7→
Z

X

a(Y , X) dν(X) (110)

Therefore A(D) has a basis {b1(Y ), b2(Y ), . . . , be(Y )}, and for any ν ∈ D there

are coefficients γq such that A(ν)(Y ) =
Pe

q=1 bq(Y )γq. By choosing Dirac distri-

butions ν(X) := δ(X−X0), we see that for any strategy combination (X0, Y ) the
interaction term can be written as

a(Y , X0) =

Z
X

a(Y , X) dν(X) =

eX
q=1

bq(Y )γq (111)

Thus the cq-functions are defined pointwise from Equality (111) as cq(X0) := γq.
That e is the minimal number of functions bq and cq, follows from the second part
of this proof.

Conversely, if a(Y , X) can be written as a finite sum
Pe

q=1 bq(Y )cq(X), then

ρ(Y )(I) = r(Y )

 
1−
Z

X

eX
q=1

bq(Y )cq(X) dν(X)

!
= r(Y )

 
1−

eX
q=1

bq(Y )Iq

!
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where Iq :=
R

X
cq(X) dν(X). Thus we see that the environment is at most e-

dimensional. In fact, I is exactly e-dimensional: if I were e′-dimensional with e′ < e,
then the first part of the proof shows that e was not minimal.

To finish the first half of the proof, we note that there cannot exist an interaction

operator a(Y , X) =
Pe′

q=1 bq(Y )cq(X) with environments of dimension e > e′, as

the second half of the proof shows that e 6 e′. ut

F The dynamics of fractions pi

We have seen, through the equality P ∗ = E∗−1T ∗ (41), that the equilibrium frac-
tions for all models depend in an identical way on the simple fitness function sX(Y )
and the strategies of the players, up to but not including terms of order O(ε3). But
there is more than that: in this appendix we argue that for a given fitness function,
the dynamics of the fractions is model-independent in the same sense as well.

To show this, we first analyze a general Lotka-Volterra system. Later on we
repeat the analysis with a resource dynamics model, as the relevant singular per-
turbation theory for the dynamical analogues of the equilibrium equations (1) for
general structured populations have not yet been developed. (We note that for the
single birth state case, an obvious research plan would be to apply the approach in
the third chapter of the thesis of Getto (2005) to the conjecture of Greiner et al.
(1994); see also Diekmann et al. (in press)).

First we consider a Lotka-Volterra community {X1, X2, . . . , XN−1} at equilib-
rium, to which we add a small number nN = O(ε2) of mutants with strategy XN .
We recall that for the (N − 1)-resident community at equilibrium, the density is of
the form n̂ = 1 + O(ε2) (38), so at least initially n = 1 + O(ε2) for our N -resident
community as well. That this actually holds at all times, is shown in the following
way.

Writing ri := r(Xi) and aij := a(Xi, Xj) = 1+ε2αij +O(ε3) for some constants
αij (33), the dynamics of each of the N densities is

dni

dt
= ni ri

 
1−

X
j

aij nj

!
(112)

and therefore the dynamics of the total density is

d∆n

dt
=

dn

dt
=
X

j

dnj

dt
=
X

j

nj rj

 
1−

X
k

ajk nk

!

= n
X

j

pj rj

 
1−

X
k

`
1 + ε2αjk

´
pk n

!
+ O(ε3)

= n
X

j

pj rj (−∆n) + O(ε2) (113)

Since the solution to this ODE is continuous, there exists some half open time
interval [0, τ) during which ∆n = O(ε). Then the sign of d∆n/dt is the opposite of
that of ∆n, so ∆n cannot escape from an O(ε2)-neighbourhood of zero and τ = ∞.
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Bearing the above in mind, we expand the dynamics of a fraction pi as

dpi

dt
=

dni

dt

1

n
− ni

n2

dn

dt

= pi ri

 
1−

X
k

aik pk n

!
− pi

X
j

pj rj

 
−∆n− ε2 n

X
k

αjk pk

!
+ O(ε3)

= pi ri

 
−∆n−

X
k

ε2αik pk n

!
+ pi

X
j

pj rj

 
∆n + ε2 n

X
k

αjk pk

!
+ O(ε3)

= −pi r(X∗) ε2 n
X

k

αik pk + pi r(X∗) ε2 n
X
jk

αjk pj pk + O(ε3) (114)

where the ∆n-terms cancelled each other out because ri, rj = r(X∗) + O(ε) and
thus the difference is absorbed by the order term O(ε3) since ∆n = O(ε2) at
all times. Similarly we can replace n by 1 in the remaining terms, which both
have ε2 as a factor. From the calculations following Equation (33) we know that
αkj = ξT

jΓ11ξj + 2ξT
jΓ10ξk + ξT

kΓ00ξk, so using the renaming C := −r(X∗)Γ (cf.
Equation 34) we rewrite Equation (114) as

dpi

dt
= −pi r(X∗) ε2

X
k

(ξT

kΓ11ξk + 2ξT

kΓ10ξi + ξT

i Γ00ξi)pk

+ pi r(X∗) ε2
X
jk

(ξT

kΓ11ξk + 2ξT

kΓ10ξj + ξT

jΓ00ξj)pj pk + O(ε3)

= pi

X
jk

“
2Uk

TC10(Ui −Uj)+(Ui + Uj)
TC00(Ui −Uj)

”
pj pk + O(ε3) (115)

We will now argue that this dynamics (115) is a shared property of all popula-
tion dynamical models. However, as mentioned in the first lines of this appendix,
there is no dynamical equivalent of the equilibrium equations available for phys-
iologically structured populations (1). Therefore we will show that the dynamics
found for Lotka-Volterra models (115), is also found for the most general subclass
of the structured population models where the dynamical equivalent of the equi-
librium equations (1) is of ODE form. The subclass in question is that of resource
dynamics models, generally formulated as follows: for each trait value Xi, per capita
growth is given by

1

ni

dni

dt
= g

 
Xi,

X
j

h1(Xj)nj ,
X

j

h2(Xj)nj , . . . ,
X

j

hr(Xj)nj

!
(116)

for some C3 functions g and h1, h2, . . . , hr. The multiresident invasion fitness is
by definition

sX(Y ) := g(Y , I1, I2, . . . , Ir) (117)

where the environment I is defined componentwise as

Is :=
X

j

hs(Xj)nj (118)

Like we did for Lotka-Volterra (29) and general structured population models (46),
we simplify the calculations through a trait-dependent rescaling that does not in-
fluence the s-function:

∀X : 0 = g(X, h1(X), h2(X), . . . , hr(X)) (119)
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The effect is that the equilibrium density n̂ is one in every monomorphic community.
Once again we need to know that ∆n = O(ε2) at all times. For that we combine

a first-order expansion of the environmental differences,

Is − hs(X
∗) =

X
j

„
hs(X

∗) +
∂hs

∂X
Uj

«
pj (1 + ∆n)− hs(X

∗) + O(ε2)

= hs(X
∗) ∆n +

X
j

∂hs

∂X
Uj pj(1 + ∆n) + O(ε2) (120)

with a first-order expansion of g

g(X∗+ V , I1, I2, . . . , Ir)

= g(X∗, h1(X
∗), h2(X

∗), . . . , hr(X
∗)) +

∂g

∂Y
V +

X
s

∂g

∂Is
(Is − hs(X

∗))

+ O(ε2) +
X
st

O
`
(Is − hs(X

∗))(It − ht(X
∗))
´

(121)

where the derivatives are taken at Is = hs(X
∗) (∀s) and V = 0 . Note that the

first term is zero because of the rescaling, and the second because X∗ is a singular
strategy.

Because of the rescaling (119), ∆n is zero in monomorphic equilibrium commu-
nities, and hence Is − hs(X

∗) =
P

j(∂hs/∂X)U + O(ε2) there. If we combine this

expansion with that of g (121), and observe that the linear terms (in ε) are zero in
the normal form for s-functions near singularities (73), we see thatX

s

∂g

∂Is

∂hs

∂X
= 0 T (122)

As we have shown in the paragraph preceding Equation (64), ∆n = O(ε2) for a
community at equilibrium with N−1 types present. If we then add a small number
nN = O(ε2) of invaders, then there is an open time interval [0, τ) during which
∆n = O(ε). During this interval, by combining Expansions (120) and (121) and
Equality (122), we find

d∆n

dt
=

dn

dt
= n

X
i

pi g(X∗ + Ui, I1, I2, . . . , Ir)

= (1 + ∆n)
X

s

∂g

∂Is
hs(X

∗)∆n + O(ε2) (123)

From this we can conclude that either ∆n = O(ε2) or its sign is the opposite of
that of d∆n/dt, so the time interval [0, τ) is actually unbounded and ∆n = O(ε2)
at all times. The sign difference is easy to show, as the assumption of the existence
of a fixed point attractor (1.1) holds for this singular community at equilibrium, so

0 >
∂g(X∗, I1, I2, . . . , Ir)

∂n
`

Is=hs(X∗)n
n=1

´ =
X

s

∂g

∂Is
hs(X

∗) (124)

To find the dynamics of the fractions pi, we need a second-order expansion of
the both the environmental differences,

Is − hs(X
∗) = hs(X

∗) ∆n +
X

j

„
∂hs

∂X
Uj + Uj

T ∂2hs

∂X2 Uj

«
pj + O(ε3) (125)
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and the community dynamics,

g(X∗+ V , I1, I2, . . . , Ir)

=
X

s

∂g

∂Is
(Is − hs(X

∗)) +
1

2

X
st

∂2g

∂Is∂It
(Is − hs(X

∗))(It − ht(X
∗))

+
X

s

(Is − hs(X
∗))

∂2g

∂Is∂Y
V +

1

2
V T ∂2g

∂Y 2 V + O(ε3) (126)

The dynamics of the fractions is then approximated as

dpi

dt
=

dni

dt

1

n
− ni

n2

dn

dt

= pi

“
g(Xi, I1, I2, . . . , Ir)−

X
j
pj g(Xj , I1, I2, . . . , Ir)

”
= pi

 X
s

 X
k

pk
∂hs

∂X
Uk

!
∂2g

∂Is∂Y
Ui +

1

2
Ui

T ∂2g

∂Y 2 Ui

!

− pi

 X
j

pj

 X
s

 X
k

pk
∂hs

∂X
Uk

!
∂2g

∂Is∂Y
Uj +

1

2
Uj

T ∂2g

∂Y 2 Uj

!!
+ O(ε3)

= pi

X
jk

pj pk

“
2Uk

TC10(Ui −Uj)+(Ui + Uj)
TC00(Ui −Uj)

”
+ O(ε3) (127)

where we have used the correspondences

C00 =
1

2

∂2g

∂Y 2 C10 =
1

2

X
s

∂

∂Y

„
∂g

∂Is

∂hs

∂X

«T

=
1

2

X
s

∂hs

∂X

T ∂2g

∂Is∂Y

which are straightforward to derive, given the definition of sX(Y ) (117) and the
expansion of g (126). Our last result (127) is identical to that for Lotka-Volterra
systems (115) and shows that the dynamics of the fractions is the same, up to and
including terms of order O(ε2), for all systems near evolutionary singularities.

G Resource utilization and abundance, in relation to invadability

We will show here that in our example (Subsection 4.6), the matrix C00 is positive
definite (resp. indefinite, negative, nonnegative or nonpositive definite) if and only
if Ψ − Φ is positive definite (resp. indefinite, negative, nonnegative or nonpositive
definite).

Proof We start by decomposing the symmetric, positive definite matrix Φ using a
matrix V of normalized, orthogonal eigenvectors:

∃V, Λ : ΦV = VΛ for which id = VTV = VVT (128)

where id is the identity and Λ is a diagonal matrix containing the (strictly positive)
eigenvalues of Φ. Using the above, we decompose Φ and find

Ψ + Φ = VΛ
1
2

h
Λ−

1
2 VTΨVΛ−

1
2 + id

i
Λ

1
2 VT (129)
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so that

C00 =
Φ−1

4
− [Ψ + Φ]−1

2

= VΛ−
1
2

»
1

4
id− 1

2

h
id + Λ−

1
2 VTΨVΛ−

1
2

i−1
–

Λ−
1
2 VT (130)

Defining C∗00 := 1
4
id − 1

2

h
id + Λ−

1
2 VTΨVΛ−

1
2

i−1

, it is easy to see that C00 has

a positive (resp. negative, zero) eigenvalue for each positive (resp. negative, zero)

eigenvalue of C∗00: for any vector v, consider w := VTΛ
1
2 v so that wTC∗00w =

vTC00v. The same correspondence holds between [Ψ − Φ]∗ := Λ−
1
2 VTΨVΛ−

1
2 − id

and Ψ− Φ.
To conclude the proof, it suffices to remark that the matrices [Ψ−Φ]∗ and C∗00

have the same eigenvectors, and more importantly that the signs of their eigenvalues
coincide: h

Λ−
1
2 VTΨVΛ−

1
2 − id

i
v = λv

⇔
h
Λ−

1
2 VTΨVΛ−

1
2 + id

i−1

v = (λ + 2)−1v

⇔ C∗00v =

»
1

4
− 1

2
(λ + 2)−1

–
v =

1

4

λ

λ + 2
v

where λ+2 is necessarily positive, as it is an eigenvalue of a sum of positive definite
matrices. ut


