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The growth of many artificial replicators is approximately parabolic (sub-exponential) in solution, due to the self-
inhibition through duplex formation by the association of single-stranded molecules. This type of growth implies 
“survival of everybody” under a selection constraint. Parabolic growth requires high enough concentration so that 
the single strands can find one another. The selective outcome is more complicated when spontaneous decay of 
molecules is also taken into account. When double strands decompose at a slower rate than single strands, coexis-
tence or survival of the fittest becomes a quantitative issue. Here we investigate the evolution of parabolic repli-
cators by the methods of adaptive dynamics. Directional selection for higher replication rate in general results in a 
“parabolic quasi-species”, due to the fact that the fittest template is followed by a moving shadow of inferior 
templates that owe their presence to parabolic growth. Under the assumption of cross-hybridisation between non-
identical templates molecular coexistence disappears when such pairing is sufficiently non-selective, because rep-
licators do not inhibit themselves more than they limit the others. At intermediate specificity of pairing adaptive 
branching of the population becomes feasible, due to the fact that distant enough sequences are able to escape 
from cross-limitation by other sub-populations. 

 
Keywords: Parabolic replicators, dynamical coexistence, adaptive dynamics, origin of life 

 
 

“… the Struggle for Existence amongst all organic beings throughout the world … 
inevitably follows from their high geometrical powers of increase …” 
(Darwin: Origin of Species…, 1859) 

 
 

1. Introduction:  
the world of parabolic replicators 

 
The idea of natural selection is intrinsically tied to 
a basic exponential growth tendency of populations 
of evolutionary units, defined by:  

 p
ii

i Nk
dt

dN =  (1) 

where Ni is the population density (in population 
dynamics) or the concentration (in chemistry) of 

species i, and p = 1. If this type of growth prevails, 
only the species with the highest growth rate con-
stant kmax survives under a selection constraint, 
such as (cf. Eigen, 1971):  

 ∑−=
j

p
jji

p
ii

i NkNNk
dt

dN
 (2) 

which sets up the system so that the total density is 
kept unity (without loss of generality). There are 
other types of selection constraint, but the conclu-
sion remains valid. Obviously, exponential growth 
cannot go on forever, one obvious constraint being 
resource limitation, which acts as an extrinsic con-
straint. 

* Corresponding author: Géza Meszéna, Collegium Buda-
pest, Department of Biological Physics, Eötvös University, 
Pázmány Péter sétány 1A, H-1117 Budapest, Hungary, 
E-mail: geza.meszena@elte.hu. 



 G. MESZÉNA and E. SZATHMÁRY 
 

148

There are, however, intrinsic deviations from 
growth with p = 1. In this paper we consider the 
case of p<1, i.e. sub-exponential (Szathmáry and 
Gladkih, 1989) or, especially, parabolic (p = ½, 
Von Kiedrowski, 1993) growth. Such type of 
growth was first observed by Von Kiedrowski 
(1986) in case of a non-enzymatically replicating 
oligonucleotide analogue. Since then a whole zoo 
of such replicators was synthesized and tested (see 
Von Kiedrowski, 1999). The selection conse- 
quences of this type of growth were later realized 
(Szathmáry and Gladkih, 1989) to result in ‘sur-
vival of everybody’ (Szathmáry, 1991) instead of 
‘survival of the fittest’.  

The reason for parabolic growth in such systems 
is that template and copy associate easily, although 
reversibly. The associated double-stranded form is 
replicationally inert: another round of templated 
synthesis can follow only after dissociation (Von 
Kiedrowski, 1986). Association hence results in 
self-inhibition of the replicator. The lower the con-
centration N, the faster the growth, hence the ‘pro-
tected polymorphism’, to use a term from popula-
tion genetics. Indeed, a globally stable equilibrium 
of coexisting replicators could be proven for the 
purely parabolic system (Varga and Szathmáry, 
1997)  

Complications abound, however, as realized by 
Szathmáry and Gladkih (1989), parabolic growth 
(and survival of everybody) prevails only if the 
density (concentration) of replicators is high 
enough, because if this condition is not met, single 
strands do not find each other and there is no 
strong enough self-inhibition (see Wills et al., 1998 
on this point). Another departure from the case of 
‘survival of everybody’ arises when decay (de-
composition) rates are also taken into account, as 
observed by Lifson and Lifson (1999). In particu-
lar, one can introduce (exponential) spontaneous 
decay attacking the different molecular species. 
The Lifsons argued that when this is done, the 
possibility for coexistence vanishes. However, as 
realized by Von Kiedrowski and Szathmáry 
(2000), and confirmed by Scheuring and Szath- 
máry (2001), coexistence is nevertheless possible 
if not only single strands but also double strands 
decompose. A chemically feasible analogue has 
been suggested in the chromatographized replica-
tor model (Von Kiedrowski and Szathmáry, 2000), 
where selection for higher replication rate is possi-

ble. In that model it is assumed that replicators of 
the parabolic type grow and move in a chromatog-
raphy column, and that the double strands bind 
better than the single stands. Consequently, the 
single strands are washed out more readily, result-
ing in a higher apparent decay rate for single than 
for double strands. Hence the decay rates of single 
strands and double strands are analogous to the 
corresponding desorption rates from the chroma-
tography column. 

Undoubtedly, binding to mineral surfaces is 
likely to have crucially contributed to the selection 
dynamics of replicators (e.g. Czárán and Szath- 
máry, 2000). The above-mentioned chromato- 
graphized replicator model indicates the validity of 
this insight for parabolic replicators, too. A more 
explicit treatment is being presently worked out. 

True, sustained, exponential growth of a real 
population is not realistic. In ecology population 
growth is often approximated by the logistic curve. 
It is clear, however, that true population dynamics 
can be arbitrarily complicated and can vary accord-
ing to the species and to the circumstances. Ana-
lysing the evolutionary consequences of all of the 
growth laws separately would be cumbersome. 
More importantly, if Darwinian selection would be 
restricted to, and dependent on, specific assump- 
tions on population dynamics, it could not be con-
sidered as a general phenomenon of biology. 

Fortunately, there is a tautological, but useful, 
way of considering any kind of population growth 
as “instantaneously” exponential. Population dy-
namics of any population can be written into the 
form 

 NEr
dt

dN ⋅= )( , (3) 

where the “environment” E denotes all factors 
affecting the demographic parameters of an indi-
vidual, including the rest of the population. )(Er  
is the instantaneous rate of population growth. If, 
in a thought experiment, E were kept constant, then 
the population grew exponentially according to this 
rate. In reality, the environment of the individual is 
always affected by the population growth, i.e. E 
depends on N. 

The instantaneous rate of increase determines 
the course of selection at the given moment. In 
competition between two populations, the ratio of 
population sizes (N1 and N2) changes according to 
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the difference between the growth rates (r1 and r2) 
in the given environment: 

 ( )
2

1
21

2

1 )()(
N

N
ErEr

N

N

dt

d −= . (4) 

In this sense, the instantaneous growth rate is the 
genuine measure of the fitness in the situation 
characterised by E (cf. Metz et al., 1992). In case 

of parabolic growth (p =  ½), NEr /)(par α= . 
That is, reproduction is enhanced by lower popula-
tion size. At higher density, the replication capabil-
ity of an individual is limited by product inhibition. 

The following distinction is of crucial im- 
portance. If the competing parabolic replicators are 
affected by their own population sizes 

( iii Nr /par α= , where i = 1,2 distinguishes be-

tween the competitors), then the rare type has an 
extra advantage over the other due to its rarity. In 
contrast, if they are affected by the total population 

size ( 21
par / NNr ii += α ) then 2121 // αα=rr  

and rarity causes no relative advantage. Individuals 
of both populations receive the same amount of 
product inhibition from the rest of the population. 
In this case, while the exponential growth rates are 
not fixed, their ratio is. The fitter outcompetes the 
less fit. 

In this paper we consider the limits to selection 
of parabolic replicators when both single and dou-
ble strands are allowed to decay. We consider 
competition of such replicators in Section 2, and 
evolution of them in Section 3. Section 3.1 intro-
duces the concept of a “parabolic quasi-species”, 
the cloud of variants existing due to the partly non-
Darwinian character of selection. Section 3.2 pre-
sents results on parabolic replicators with signifi-
cant cross-hybridisation between strands that differ 
in sequence. Finally, we discuss the interpretation 
and the significance of these findings (Section 4).  

 
 

2. Competition between parabolic replicators 
 

In this section we investigate competition among 
several parabolic replicator species. As we will 
see, the behaviour depends strongly on the ability 
of the two types of strands to form a mixed pair 
(hybridisation). First, in Section 2.1, we consider 

the special case of no hybridisation, then, in Sec-
tion 2.2, the general case.   
 
 

2.1. Replicators with no hybridisation 
 

Let Ai and Bi denote the concentrations of the sin-
gle strands and the double strands of the species i, 
respectively. (i = 1,…,n, n is the number of spe-
cies.) Their respective decay rates are di and iδ . In 

presence of the monomers, a single strand of type i 
is transformed into a double strand by template 
copying at the rate kiR, where R is the monomer 
(resource) concentration and ki is the replication 
rate constant. The monomers are generated con-
tinuously at rate ρ  and are consumed during rep-
lication. Two single strands can spontaneously pair 
up into a double strand with rate a. A double strand 
can dissociate into two single strands with rate b. 
These processes are summarised by the differential 
equations (see Von Kiedrowski and Szathmáry, 
2000; Scheuring and Szathmáry, 2001): 

 ∑
=

−=
n

i
ii AkR

dt

dR

1

ρ  (5) 

 ( ) ( )iiiiiii
i dRkAAaBb

dt

dA +−−= 22  (6) 

 iiiiiiii
i BRAkBbAa

dt

dB δ−+−= 2 . (7) 

The model can be interpreted for complementary 
pairing on the following way. The total population 
of 2n sequences is split into two sets of n fully 
complementary sequences. The ith molecule of set 
1 is complementary to the ith molecule of set 2. 

We will use the total concentrations 

 Mi = Ai+2Bi  (8) 

for the replicators satisfying the equation 

 ( ) iiiii
i BdRkA

dt

dM δ2−−= . (9) 

It will be often convenient to consider the “fast 
pairing” limit, in which pairing and dissociation 
are fast compared to replication and decay. Then, 
these processes equilibrates and 
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 2
ii aAbB = . (10) 

In the fast pairing limit and at high concentration, 
which are good assumptions for a typical experi-

mental situation, ii BM ⋅≈ 2  and 2/1
ii MA ∝ . 

Then, for 0=δ  and for constant R, the dynamics 
eq. (9) assumes the shape (1) with p = 1/2, justify-
ing to consider these replicators as “parabolic”.  

We set n = 2 and investigate whether species 2, 
while rare, can grow in the equilibrium population 
of species 1, without assuming fast pairing. The 
equilibrium condition for species 1 reads as 

 ( ) 02 11111 =−− BdRkA δ ,     (11) 

leading to the equilibrium resource density 

 







+=

e

e

A

B
d

k
R

1

1
11

1
1 2

1 δ . (12) 

(A1
e, and B1

e are the equilibrium values of A1 and 
B1.) Initial growth of the second species is given by 

 ( )222
2 dRkA

dt

dM −= ,     (13) 

because B2 is negligible compared to A2 when re-
plicator 2 is rare. This growth is positive in the 
equilibrium (12) if and only if 

 
2

2
1 k

d
R > . (14) 

that is, when 

 

e
1

e
1

11

2
1

min
22

2
A

B
d

d
kkk

δ+
=> . (15) 

If 021 ≠== ddd  and δδδ == 21  then the in-
vasion criterion becomes 

 

e
1

e
1

1
min
22

21

1

A

B

d

kkk

⋅+
=>

δ
 (16) 

(Fig. 1). Observe that 1
min
2 kk ≤ , the equality holds 

only at 0=δ .  
The rare species can always grow if its replica-

tion rate is higher than that of the resident. If 
0=δ  then 1

min
2 kk =  and, by symmetry,  

FIG. 1. Range of invasion. Resident strategy k1 can be invaded 

by any strategy above min
2k . There is a “shadow” region 

between the two, in which the rate strategy is disadvantageous,  
but able to invade 

 

2
min

1 kk = . This is the (only) case of undisturbed 
Darwinism: The species with the higher replication 
rate outcompetes the one with the lower one, and 
vice versa. No species coexistence is possible with 
different replication rates. On the other hand, if 

0>δ , 1
min
2 kk < , so even a species with lower 

replication rate than that of the resident can grow if 

its disadvantage is not too high. If 12
min
2 kkk << , 

sequences with replication rates k1 and k2 can mu-
tually invade each other. That is, they are able to 
coexist. This calculation confirms those of Scheur-
ing and Szathmáry (2001). One can take steps fur-
ther, however. 

In particular, behind the resident k, there is a 
“shadow” region in which any strategy can invade 
and coexist. The width  

 min
2e

1

e
1min

21 2 k
A

B

d
kkW ⋅⋅⋅=−= δ

  (17) 

of the “shadow” is small if d<<δ  and/or if 
e
1

e
1 AB << . In the fast pairing limit, 

 min
2

e2 kA
bd

a
W i ⋅⋅⋅= δ

. (18) 

That is, the shadow becomes narrow for low con-
centrations, when pairing is rare. 

We can conclude that the disadvantage of the 
more abundant type, relative to the rare one, comes 
from the decay of the double strands. The shadow 
disappears if the double strands are either rare or 
does not decay. The notion of lifetime reproductive 

mutant
replication 

rate
k1k2

min

W
shadow region:

deleterious mutant 
can invade

mutant
can invade

mutant
cannot invade

resident
replication

rate
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ratio, which is defined as the expected number of 
offspring of a single strand during its entire life-
span, is useful to interpret this result. A population 
increases/decreases, or is in equilibrium, if its life-
time reproductive ratio is higher/lower than, or 
equals to, 1 (cf. Mylius and Diekmann, 1995; Pász-
tor et al., 1996). At low concentration, when all of 
the strands are unpaired, their lifetime reproductive 
ratio is k/d, as the expected lifetime is 1/d. At 
higher concentration, the strands spend a fraction 
of their lifetime in the inactive, paired, form. If 

0=δ , they are immune to decay during this pe-
riod, so their expected total time until decay spent 
in the unpaired form remains 1/d. Consequently, 
pairing delays replication but does not affect the 
lifetime reproductive ratio. Increasing concentra-
tion slows down population growth but cannot stop 
it. The situation is different when 0>δ . As decay 
occurs during the paired state, the expected time 
spent unpaired is decreased by pairing. Higher 
concentrations lead to lower lifetime reproductive 
ratio. When it decreases to 1, the population stops 
growing. Then another, non-hybridising, strand 
with lower replication rate can invade if its lower 
concentration compensates for its lower replication 
rate. [These arguments do not directly apply when 
both the single and the double strands are immor-
tal, as the lifetime reproductive ratio has no mean-
ing in this case. Note, however, that the dilution 
term in eq. (2) is equivalent of subscribing equal 
decay rates for the single and for the double 
strands.] 

 
 

2.2. Replicators with cross-hybridisation 
 

Here we allow pairing between similar, but differ-
ent, sequences. For notational convenience, we 
will distinguish between the double strands of 
types (ij) and (ji) for ji ≠ . As an arbitrary choice, 
we divide the double strands containing a strand of 
type i and a strand of type j evenly between these 
two classes. Bij denotes the concentration of the 
type (ij). By definition, Bij = Bji. aij, bij and ijδ de-
note the pair-forming rate, the de-pairing rate and 
the decay rate of the type (ij), respectively. All of 
these parameters are symmetrical in the exchange 
of the indices. 

The dynamical equations are 

 ∑
=

−=
n

i
ii AkR

dt

dR

1

ρ  (19) 

( )[ ]∑ −+−+=
j

jijiijjijiijij
i AAaaBbBb

dt

dA
 (20) 

          ( )iii dRkA +−  

ijijiiijijijjiij
ij BRAklBbAAa

dt

dB
δ−+−=     (21) 

where 

 




≠
=

=
ji

ji
lij for ,0

for ,1
. (22) 

The total concentration is 

 ( )∑ ++=
j

jiijii BBAM , (23) 

obeying the dynamics 

   ( ) ( )∑ +−−=
j

jijiijijiii
i BBdRkA

dt

dM δδ . (24) 

In the fast pairing limit, when 

 ji
ij

ij
ij AA

b

a
B ⋅⋅= , (25) 

the dynamics becomes 
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j
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Let us repeat the invasion analysis for this case. 
The equilibrium state of a single resident of type 1 
is: 

 
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k
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as there is no other type of sequence to pair. The 
growth rate of the rare type 2: 
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 2121121222 BBAd δδ −−− . (28) 
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Here the concentration of the (2,2) pairs was ne-
glected due to the rarity of the species 2. If 

021 ≠== ddd  and δδδδ === 211211  then the 
invasion criterion becomes 

 

e
1

e
11

2

2112

1
min
22

21

1

A

B

d

A

BB

d
kkk

⋅+

+⋅+
⋅=>

δ

δ

. (29) 

At random pairing, a12 = a11 and b11 = b12, so the 
pairing equilibrium reads as  

 
1

11

2

21

2

12

A

B

A

B

A

B == . (30) 

According to eq. (29), 1
min
2 kk =  for random pair-

ing. The higher k outcompetes the lower one. 
Suppose now, that different strands are less able 

to form a duplex, than the identical ones, mani-
fested in higher de-pairing rate for the heterodu-
plexes: b12>b11. We suppose no difference in the 
pairing rates (a12 = a11), as they are dominated by 
the pair formation entropy, which is independent of 
the sequences. Then, 

 
1

11

2

12

A

B

A

B <  (31) 

and, consequently, 1
min
2 kk < .  

These results resemble to the behaviour of the 
Lotka–Volterra competition model: Decreasing 
product inhibition, just like the decreasing compe-
tition in the LV case, facilitate coexistence of dif-
ferent phenotypes. The analogy becomes quantita-
tive, when the concentrations are low such that 
paired strands are very rare and thus ii AM ≈ . 
Then eq. (26) can be rewritten into the form of 
Lotka–Volterra type population dynamics: 

 i
i

j
jij

i
i A

K

A

r
dt

dA

















−=
∑α

10 , (32) 

where the carrying capacity is 

 iii dRkK −= , (33) 

the initial growth rate is 

 ( )iiii dRkAr −=0 , (34) 

and the competition coefficient is 

 
ji

jiji

ij

ijij
ij b

a

b

a δδ
α += . (35) 

Note that both 0
ir  and Ki depend on the resource 

concentration R. This means that approximation of 
the model by Lotka–Volterra dynamics, strictly 
speaking, supposes also to keep the resource level 
constant. Still, the coexistence caused by self-
inhibition is properly represented by the Lotka–
Volterra approximation. 

 
 

3. Evolution of parabolic replicators 
 

How does parabolic coexistence alter the course of 
Darwinian evolution via small mutational steps? 
To study this question, we trivialise the relation 
between the sequence and the phenotype. We sup-
pose a one-dimensional phenotype parameter and 
assume that similar sequences have similar pheno-
types. Consequently, we suppose that the possibil-
ity of hybridisation decreases with the phenotype 

difference between the strands. Discrete points, 
spaced by the uniform distances x∆  along the 
phenotype space, represent the phenotypes corre-
sponding to individual sequences. Mutation of a 
phenotype leads to one of the two neighbouring 
phenotypes (Fig. 2). 

The evolutionary simulations proceed as fol-
lows (Metz et al., 1996; Geritz et al., 1997, 1998). 
The combined population dynamics of several 
competing phenotypes is followed according to the 

x∆

x

x∆x∆x∆x∆x∆

sequences

(phenotype)

mutations

FIG. 2 The phenotype space of replicators. The phenotype 
values realised by specific sequences are spaced uniformly 
with distances x∆  between them. It is supposed that similar 
sequences have similar phenotypes, so a mutation produces an 

adjacent phenotype 
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differential eqs (5–7) or (19–21). If the density of a 
species decreases below a threshold, it is removed 
from the simulation. At random instances, new 
phenotypes, with low densities, are introduced as 
mutants of the phenotypes already present (the 
mutation rate is defined on a per individual basis). 
A mutant phenotype is chosen randomly from the 
two neighbours (on the linear phenotype scale) of 
the ancestral phenotype.  

As a representation of the Darwinian idea of 
evolution by small steps, it is usual to assume in 
evolutionary simulations that mutation step size is 
small as compared to the relevant distances in the 
phenotype space. For the parabolic replicators, this 
assumption would mean that the distance x∆  be-
tween the neighbouring phenotypes should be 
small as compared to the “recognition distance” 
within which two strands can form a pair. Obvi-
ously, it is violated in case when only the identical 
sequences can form a pair. Consequently, we have 
to deal with two, entirely different regimes. The 
“no cross-hybridisation” case will be studied in 
Section 3.1 while the recognition distance will be 
chosen larger than x∆  in Section 3.2.  

Note the discrepancy between the random crea-
tion of the mutants and the deterministic way of 
following their fate. This kind of simulation ne-
glects the fact that even an advantageous mutant 
can go extinct because of the demographic stochas-
ticity at low density, affecting the speed of evolu-
tion. The qualitative picture is affected only when 
the relative speeds (of different species and/or of 
different directions) matter, which is not the case 
in our investigations. 

 
 

3.1. The parabolic quasi-species 
 

In this subsection we study the evolutionary ver-
sion of the competition model of Section 2.1: the 
population dynamics is determined by the eqs  
(5–7).  

For the first go, we identify the phenotype of in-
terest with the replication rate k. Figure 3a shows 
the course of evolution for d=δ . After a short 
transitional period, a relatively constant distri- 
bution of strategies emerges and moves towards 
the direction of increasing replication rate. In the 
“shadow” of the species with the highest k (the 
kmax), there is a tail of coexisting species with 

lower replication rates. Understandably, the densi-
ties of the species are decreasing with the decreas-
ing replication rate. Lower replication rate should 
be compensated by the advantage of the lower 
population size. When a new mutant arrives with 
replication rate higher than kmax (that is, with repli-
cation rate kk ∆+max , where k∆  is the distance 
between the adjacent phenotypes), it invades and 
the whole population shifts into the direction of 
higher k.  

We will refer to this moving distribution as 
“parabolic quasi-species”. The term “quasi-
species” was introduced by Eigen and Schuster 
(1977) as a description of the cloud of mutants 
around the most abundant type (the master se-
quence), in mutation-selection balance. In our case, 
instead of mutation-selection balance, it is para-
bolic coexistence that shapes the quasi-species 
distribution. 

In comparison, in Figure 3b, one can observe 
the evolution of the same system, but without dou-
ble-strand decay. Instead of the characteristic 
shape of the parabolic quasi-species, one can ob-
serve the classical one, the cloud of mutants. 

In order to determine the shape of the parabolic 
quasi-species analytically, we suppose that the 
mutation events are so rare that, when a new mu-
tant arrives, the species, which are present already, 
have equilibrated. Moreover, we will suppose that 
pairing is fast. 

Let kmax denote the rate of replication of the best 
sequence present at a given time. In line with the 
analysis of the previous Section, the sequences 

ba

t=5.103

t=104

t=103

t=102 t=3.104

t=5.104

t=7.104

t=1.2.105

t=5.103

t=104

t=103

t=102

t=7.104

t=1.2.105

t=3.104

t=5.104

FIG. 3. Directional evolution of the parabolic quasi-species
with 01.0== dδ  (a) and the non-parabolic case 0=δ (b). 
Horizontal axes: [ ]1.0,0∈k , vertical axes: total density 

[ ]5,0∈M . The other parameters: 1.0=ρ , a = b = 0.03, 

02.0=∆k , mutation rate: 0.01, initial density of a mutant: 
0.01, extinction threshold: 0.009. The initial replication rate 

is 0.02 
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with ( )maxmin ,kkk ∈  can coexist with the best one, 
where kmin is defined by the relation 

 max
max

max

min

minmax 2
2 A

b

a

A

B

dk

kk ⋅=⋅⋅=− δδ
. (36) 

Here, Amax and Bmax denote the equilibrium concen-
tration of the single-stranded and the double-
stranded form of the best sequence, respectively. 

The equilibrium equation 

 







+=

i

i

i A

B
d

k
R δ2

1
 (37) 

should hold for each species, distinguished by the 
index i. By rearranging and taking into account the 
fast pairing equilibrium (10) one obtains 

 ( )dkR
a

b
A ii −⋅=

δ2
 (38) 

for the single-strand densities, which changes line-
arly with the replication rate. The corresponding 
Mi values can be calculated from (8) and (10) to 
obtain the quadratic shape of the quasi-species 

 iii AA
b

a
M += 22

, (39) 

visible in Figure 3a. 
It is important to note that the width of the  

parabolic quasi-species goes to zero in the con-
tinuous limit 0→∆k . According to eq. (36), the 
kmax – kmin is proportional to the density of the best 
species. However, the per-species density should 
go to zero, when more and more species load the 
resource in the 0→∆k  limit (see Appendix for 
the detailed calculations). 

A slightly different model with optimising, in-
stead of directional, selection is simulated in Fig-
ure 4 as a warming-up for model versions of the 
next Section. The replication rate is a quadratic 
function of the phenotype x, as 

 ( )2
0 1 xkk −= , (40) 

while the other parameters are constant. Otherwise, 
the model is identical to the previous one. Pheno- 
type x can represent any molecular-level con- 
tinuous parameter, which has a non-monotonous 
impact on the replication rate, like a shape parame-

ter, a binding constant, a pK value, or the tempera-
ture the replicator is optimised to. 

The behaviour of the system is very similar to 
the previous one, except for the fact that the para-
bolic quasi-species stops at the optimum and as-
sumes a symmetric shape with decreasing densities 
at both sides. The analytic calculation of the shape 
would be similar to the previous case. 

 
 

3.2. Branching evolution in case  
of cross-hybridisation 

 
We re-investigate the problem of optimising evolu-
tion described at the end of the previous Section, 
allowing for cross-hybridisation.  

We suppose that ability of pair formation de-
creases with increasing phenotype differences be-
tween the strands. (Obviously, the assumption, that 
the same continuous parameter scales the pair for-
mation and determines the replication rate, is, 
again, a trivialisation of the genotype-phenotype 
mapping.) More precisely, the dissociation rate bij 
between the phenotypes xi and xj increases with the 
phenotype difference xi – xj according to  
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FIG. 4. Optimising evolution of parabolic replicators for dif-
ferent d/δ  values. It leads to equilibrium parabolic quasispe-
cies with tails on both sides. Lower plots: the evolutionary 
process. Each point represents a strategy, which is present at 
the given time. Upper plots: density distribution at the final 
time. Decreasing double-strand decay rate decreases the width 
of the quasi-species and moves the behaviour closer to the 
Darwinian one. Parameters: k0 = 0.00125, 05.0=∆x , initial 
strategy: x = –0.9, 1=ρ , the others are identical to the values 

used at Fig. 3 
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(See Fig. 5a. The second term, which puts an upper 
limit for the dissociation, was introduced by tech-
nical reasons, to avoid the numerical difficulties 
that the introduction of exponentially large rates 
would cause.) Parameter σ  is the “recognition 
width”: sequences with strategy difference much 
higher than σ  cannot form a persistent pair with 
each other. As before, pair-formation rates are 
supposed to be independent from the phenotype 
difference: 

 aaij = . (42) 

The replication rates are defined by eq. (40) again. 
All of the other parameters are constant. 

Then the pairing equilibrium is characterised by 

==
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(Fig. 5b), corresponding to a maximum in the bind-
ing free energy when the sequences are identical. 
The approximating Lotka–Volterra model has the 
competition coefficient 
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Figure 6a shows the simulation results for different 
pairing widths. The dominant feature of the plot is 
the (often repeated) branching of the evolutionary 
process. 

There are two kinds of selection pressure in the 
model. First, there is an element of optimising 
selection as the central strategy x = 0 has the high-
est replication rate. Second, it is advantageous to 

be different from the rest of the population because 
of the decreased product inhibition. To understand 
the σ -dependence of the interplay between these 
forces and the parabolicity, one has to compare the 
recognition width with two relevant distances in 
the phenotype space: the discreteness x∆  and the 
scale on which the replication rate changes. 

When x∆>>σ , a mutant sequence and its an-
cestor can pair with each other, so the advantage of 
rarity is of ( )( )2/σx∆Ο  small between them. So, 
for 0≠x , nothing stops a mutant with higher k to 
outcompete its less advantageous ancestor com-
pletely. The step-by-step process of such substitu-
tions proceeds until the fitness gradient vanishes at 
the phenotype 0=x  maximising the replication 
rate.  

ijba /ijb

ji xx − ji xx −

maxb

minb

max/ ba

min/ ba

ba

FIG. 5. Change of de-pairing rate (a) and the equilibrium con-
stant of the pair formation (b) as a function of phenotype 

difference 
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FIG. 6. Branching adaptive dynamics. Comparison between 
parabolic replicators with cross-hybridisation (a) and the 
Lotka–Volterra competition model (b). Lower plots: the evo-
lutionary process. Each point represents a strategy, which is 
present at the given time. Upper plots: density distribution at 
the final time. The control parameter σ is the hybridisation 
width and the competition width in the two cases, respectively. 
While the details are uncomparable, behaviour of the two 
models are remarkably similar. Decreasing σ increases the 
number of emerging branches. For low σ, there is no branch-
ing, at all. bmin = 0.03, bmax = 1.0, K0 = 1.0. The mutation rate 
is 0.001 and 0.1 on (a) and (b), respectively. The other pa-
rameters are the same  as  in  Fig. 4.  On  (b),  the, in principle, 

continuous phenotype space was divided into 80 

a) 

b) 
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At the “singular” phenotype 0=x , both kinds 
of the selection pressure are of ( )2x∆Ο , so the 

outcome depends on the balance between them. If 
the replication rate decreases sharply on the scale 
of recognition width, as on the leftmost plot in 
Figure 6a with a relatively large σ , advantage of 
being different from the established population of 
the singular phenotype cannot overcome the disad-
vantage of having a smaller replication rate than of 
the singular phenotype. Then, the singular pheno-
type is a local ESS, as no other phenotype can 
invade it. This is the classical, Darwinian, optimi-
sation. As every strategy is product-inhibited (al-
most) uniformly by the whole population, no strat-
egy acquires advantage, or disadvantage, from 
product-inhibition.  

In contrast, if the decrease of the replication rate 
is moderate, or small, on the scale of recognition 
width, a rare mutant, with a phenotype slightly 
different from the singular one, gains an advantage 
from being different and invades. The disruptive 
selection emerging in this situation splits the popu-
lation and the sub-populations evolve away from 
each other. The diverging evolution ceases when 
the distance between the branches reaches the or-
der of σ  and the phenotypes feel no longer the 
inhibitory effects of each other. The branching 
process may repeat itself several times for smaller 
σ s. 

This behaviour is remarkably similar to the 
adaptive dynamics of the Lotka–Volterra com- 
petition model (Metz et al., 1996), which is reca-
pitulated in Figure 6b with the carrying capacity 
function 

 ( )2
0 1 xKK −= , (45) 

imitating the shape of the replication rate function 
(40), and with the competition kernel 
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mimicking the shape of (44). 
Note that the simulation parameters for the 

parabolic replicators was not chosen to satisfy the 
Lotka–Volterra limit described in Section 2.2. 
Most of the strands are paired at the given circum-
stances. Moreover, the carrying capacity curve (45) 
does not reflect the dependence on the resource 

concentration expressed in eq. (33). Still, the LV 
competition picture captures the essence of the 
evolutionary consequences of cross-hybridisa- 
tion. The non-constant initial growth rate (eq. 
(34)), which is missing from this simulation also, 
does not have an evolutionary significance. 

On the rightmost plot of Figure 6a ( 1.0=σ , 
05.0=∆x ) the condition x∆>>σ  starts to be 

violated. The dense branching pattern becomes 
very similar to the comparable simulation without 
cross-hybridisation (leftmost panel of Fig. 4), when 
a parabolic quasi-species evolves to the optimum 
and settles down there. Even at 2.0=σ  one can 
observe a departure from the “ideal” behaviour 
described above: the first branching occurs before 
reaching the maximal k. 

 
 

4. Discussion 
 

Clearly, the world of artificial replicators and their 
dynamical behaviour is constantly expanding (Von 
Kiedrowski, 1999). We see our work as a step 
forward in the analysis of the underlying dynamics. 
The coupling of a field in evolutionary biology 
(namely, adaptive dynamics) and one in chemistry 
(namely, replicator synthesis and analysis) is excit-
ing, is likely to yield to useful results and pose 
further questions. In this section we discuss some 
connections to ecological theory and adaptive dy-
namics and some directions in which the present 
work could be developed further.  

 
 
4.1. Connections to the theory of coexistence  

and branching 
 

If the environment can be fully characterised by a 
finite number of “limiting factors”, the number of 
coexisting strategies cannot be larger than the 
number of limiting factors for the generic existence 
of the equilibrium (MacArthur and Levins, 1964; 
Levin, 1970). In this context, environment includes 
all factors affecting the lifetime reproductive ratio 
of an individual. This concept of limiting factors, 
useful in ecology, becomes tautological for non-
hybridising parabolic replicators: each replicator is 
a limiting factor for itself. At random pairing, no 
independent limitation exists for the different spe-
cies. Instead, all of them are limited by the total 
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population size via product inhibition. Accord- 
ingly, we cannot observe parabolic coexistence in 
case of unrestricted hybridisation. (Together with 
the resource, there are two limiting factors in this 
case. This situation allows at most two types to 
coexist. However, this coexistence would require 
difference between the double-strand decay rates 
and is not discussed in this paper.)  

The intermediate case, when the equilibrium 
constant (43) decreases with the increasing pheno-
type difference between the strands, is analogous 
to the Lotka–Volterra competition model of Mac-
Arthur and Levins (1967), Metz et al. (1996). Even 
though the number of limiting factors is infinite, 
similar phenotypes cannot coexist. (Roughgarden, 
1979, provided an example of coexistence of con-
tinuously many species in this model, but this ex-
ample turned out to be structurally unstable, Sasaki 
and Ellner, 1995; Gyllenberg and Meszéna, in 
prep.) This limiting similarity principle is model-
independent: the more similar the phenotypes are 
(either in their dependence on the limiting factors, 
or in their effects on them), the narrower interval 
of the parameter(s) allow them to coexist (Meszéna 
and Metz, in press). From this point of view, the  
non-hybridising parabolic replicators should not  
be regarded as similar, even if the difference be-
tween their parameters is small. A specific strand 
of phenotype A is inhibited by the population A, 
but not by the population B, and vice versa. They 
are distinctly different sequences, even if their 
phenotypes are similar. In contrast, cross-hyb- 
ridising replicators follows the limiting similarity 
principle and coexists robustly only when their 
difference is comparable, at least, with the recogni-
tion width. 

When limiting similarity applies, a mutant, 
which is similar to its ancestor, cannot coexist with 
the ancestor. If the mutant is able to grow initially, 
then it will outcompete the resident (Jacobs et al., 
in prep.; Geritz et al., in press). The exception is 
the vicinity of a “singular” phenotype, where the 
fitness landscape is flat. Evolution via small muta-
tion steps is directional, until such a singular point 
is reached. Then, it may, or may not branch, de-
pending on whether the advantage of being differ-
ent from the rest of the population overweights the 
disadvantage of departure from the singular strat-
egy (Metz et al., 1996, Geritz et al., 1997, 1998). 
There are several possible biological reasons for 

advantage of being different: resource heterogene-
ity, habitat heterogeneity, asymmetric competition, 
etc. Among others, Meszéna et al. (1997), Geritz et 
al. (1999), Kisdi (1999), Kisdi and Geritz (1999), 
Doebeli and Dieckmann (2000), Mathias et al. 
(2001), Mathias and Kisdi (in press) contain exam-
ples of evolutionary branching in such situations. 
We demonstrated that decreasing product inhibi-
tion with increasing phenotype difference is one of 
the possible mechanisms behind branching.  

 
 

4.2. Future directions 
 

The effect of increased chain length. One conse-
quence of this is that, under the assumptions of our 
model, the possible values for replication rate con-
stants come closer to each other (∆k decreases). 
This decreases the concentration per sequence, 
which, in turn, would result in a shorter shadow of 
inferior competitors (or, put differently, in a nar-
rower width of the “parabolic quasi-species”). 
There is a counter-effect, however: longer tem-
plates associate more strongly, which by itself 
would lead to a stronger prevalence of parabolic 
growth, hence a longer shadow. But, of course, 
very long templates do not dissociate at all from 
their copies; hence growth as such ceases. Clearly, 
this needs an extended analysis. 

The speed of adaptation. Imagine the case of di-
rectional selection for larger k in a population of 
replicators. The parabolic quasi-species attains, as 
we have shown, a certain quasi-stationary width. 
Under selection for larger k there is a irreversible 
effect: the whole distribution moves in one direc-
tion and, barring large fluctuations, there is no way 
back. This is a ratchet-like mechanism. How fast 
does the ratchet click? We do not know. If the 
process is limited by variation, i.e. the supply of 
mutants, then the answer is an extension of the 
results of Dieckmann and Law (1996). But if muta-
tions are frequent enough (as it is likely for rudi-
mentary replication mechanisms; cf. Eigen, 1971), 
the speed is determined by mutation, selection and 
the dynamics of growth; including, importantly, 
stochastic effects. How is one to incorporate 
chance, affecting single and double strands? Inves-
tigations in this direction are underway. 

Selection for an optimum strategy. What is 
strategy, in realistic chemical terms, going beyond 
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the rate of ligation (k) itself? Note that, for exam-
ple, ionic strength affects template polymerisation 
processes. Under given environmental conditions 
adaptation to this environment will be caused by 
directional, then stabilizing, and then (depending 
on the nature of cross-pairing between different 
sequences) disruptive selection. 

Genotype–phenotype mapping. We have used a 
simplistic approach to this mapping problem: simi-
lar sequences have similar phenotypes. Moreover, 
persistence of the duplexes is determined by the 
very same continuous phenotypic parameter as the 
replication rate. What if more than one sequence 
can show the same phenotype? Or, when pair per-
sistence is unrelated to the replication rate? Fur-
thermore, one may wonder about the possibility of 
a rugged fitness landscape, such as can be caused 
by RNA structures (Fontana and Schuster, 1998). 
Yet this is unlikely to apply for the majority of 
parabolic replicators: they are short, quasi-linear 
oligomers. Longer molecules tend to have more 
interesting phenotypes, but they do not seem to be 
capable of replication in solution, because of the 
too strong binding of template and copy. They 
need a different replication mechanism, not con-
sidered in this paper. 

Towards exponential dynamics. Wang and 
Sutherland (1997) presented evidence for replica-
tion process with p = 0.8. Clearly, departure from 
p = ½, as valid for most non-enzymatic replicators, 
is one of the most exciting research directions on 
the road to exponential growth (p = 1), implying 
survival of the fittest. The adaptive dynamics of 
replication rate exponents is virgin territory, wait-
ing for exploration. One wonders about the possi-
ble trade-offs among parameters of association–
dissociation, ligation, etc. How are the trade-offs 
allocated in sequence space? Experiments, 
accompanied by theory, should be carried out. 
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APPENDIX 
 

Here we develop the more detailed formulas for 
the width 

 minmax kkW −=  (A1) 

of the parabolic quasi-species with special interest 
in the limit 0→∆k . No cross-hybridisation is 
supposed. The equilibrium condition of the re-
source dynamics (3) can be written into the form 
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i
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Using eq. (38) for the shape of the quasi-species 
and its consequence, the expression  
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for the lower edge of the quasi-species, one obtains 
the relation 
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If the difference k∆  between the adjacent k values 
is small enough, the summation can be approx- 
imated by the integral 
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which leads to the relation 

 kk
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This result establishes a monotonously increasing 
relation between k∆  and W. The width of the 
parabolic quasi-species diminishes in the limit 

0→∆k . For small k∆ , that is, for small W, this 
relation can be written as 

 kk
bd

a
W ∆= min2

2 ρδ
. (A7) 



 G. MESZÉNA and E. SZATHMÁRY 
 

160

 

 


