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Abstract. We investigate the possibility of coexistence of pure, inherited strategies belong-
ing to a large set of potential strategies. We prove that under biologically relevant conditions
every model allowing for coexistence of infinitely many strategies is structurally unstable. In
particular, this is the case when the “interaction operator” which determines how the growth
rate of a strategy depends on the strategy distribution of the population is compact. The
interaction operator is not assumed to be linear. We investigate a Lotka-Volterra competition
model with a linear interaction operator of convolution type separately because the convolu-
tion operator is not compact. For this model, we exclude the possibility of robust coexistence
supported on the whole real line, or even on a set containing a limit point. Moreover, we
exclude coexistence of an infinite set of equidistant strategies when the total population size
is finite. On the other hand, for infinite populations it is possible to have robust coexistence
in this case. These results are in line with the ecological concept of “limiting similarity” of
coexisting species. We conclude that the mathematical structure of the ecological coexistence
problem itself dictates the discreteness of the species.

1. Introduction

Competitive exclusion and limiting similarity are classical, but, still, controver-
sial concepts of ecology. In the formulation of MacArthur and Levins [26], the
principle of competitive exclusion states that the number of coexisting strategies
cannot be larger than the number of limiting resources. Later Levin [24] extended
the idea beyond the case of resource competition by introducing the notion of lim-
iting factors. In the terminology of Diekmann et al. [10,11] limiting factors are
environmental interaction variables through which the self-regulating feedback of
the ecosystem operates. Using the concept of environmental interaction variable
Diekmann et al. [11] reformulated the principle of competitive exclusion for a
large class of structured population models as follows: The dimension of the
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1117 Budapest, Hungary and Collegium Budapest, Institute forAdvanced Studies, Szenthár-
omság tér 2, 1014 Budapest, Hungary. e-mail: geza.meszena@elte.hu

Mathamatics Subject Classification (2000): 92D40, 92D15

Key words or phrases: Limiting similarity – Ecological niche – Regulated coexistence –
Lotka-Volterra competition model – Physiologically structured populations – Evolution of
seed-size – Structural stability.



134 M. Gyllenberg, G. Meszéna

environmental interaction variable is an upper bound for the number of species
that generically can coexist at steady state. The advantage of this formulation is
its generality: the possible interpretation of the interaction variables as resource
concentrations or other limiting factors is irrelevant.

Unfortunately, the existence of a finite number of clearly identifiable limit-
ing factors is an exception rather than a rule in ecology. Often, the resources are
not homogeneous in quality and one has to ask how resources should be counted
[5]. For instance the biological interpretation of the Lotka-Volterra competition
model used by MacArthur and Levins [27] implicitly assumes a continuous scale
of resources, that is, an infinite number of limiting factors. The Lotka-Volterra
model thus requires an infinite-dimensional interaction variable to be formulated
properly. This raises the question whether it is possible for infinitely many species
to coexist either in the Lotka-Volterra model, or in general.

The classical expectation is “limiting similarity”: in order for two or more spe-
cies to coexist, their resource usage should be “different enough” [27]. They are
then said to live in different “niches”. According to this concept, even a continuous
scale of resources does not support coexistence of an unbounded number of species.
Despite the lack of a clear mathematical basis, limiting similarity was verbally gen-
eralized beyond the Lotka-Volterra model, as “niche theory” [21] and has become
one of the cornerstones of ecological thinking [23].

Coexistence of two, three or more strategies was investigated in several papers
[7,27–29] with the general conclusion that coexistence of similar strategies are
disfavoured. Later studies went beyond the Lotka-Volterra framework. However,
no general results emerged and the hope to find a model-independent rule of how
similar coexistent strategies may be faded away [1,3,4].

As a rather drastic stroke against the theory of limiting similarity, Roughgarden
[35, p. 534–536] provided an example of coexistence of a continuum of strategies in
the Lotka-Volterra competition model. While the example was intended to describe
the phenotype distribution within a single species, it can be interpreted in the con-
text of species coexistence, as well. It seems to violate the whole idea of limiting
similarity as species with arbitrarily similar resource utilization strategies can coex-
ist. As a matter of fact, coexistence of a continuum of species is possible even in
the Lotka-Volterra model, which was the original example for limiting similarity.

The possibility of coexistence of a continuum of strategies was investigated by
Sasaki & Ellner [37] in a model of adaptation to a fluctuating environment. They
concluded that continuous coexistence is exceptional. Even if a specific choice of
model ingredients would allow it, there exists an arbitrarily small perturbation of
the ingredients, which makes coexistence impossible. It is easy to translate their
argument to the equilibrium solution of the Lotka-Volterra model [33]. So, it is
known that Roughgarden’s example is nonrobust. A completely different, non-
linear model of seed-size evolution by Geritz [13] and Geritz et al. [18] showed
a similar behaviour. In that model coexistence of a continuum of strategies was
possible only for the extreme, singular form of asymmetric competition. Limiting
similarity reappeared in the theory of adaptive dynamics [8,15,16,33]: Two similar
strategies cannot coexist except at the so-called singular strategy, where the local
gradient of the fitness is zero.
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Contrary to the general pessimism with respect to the generality of limiting sim-
ilarity, these results on very different models seem to suggest a universal behaviour.
The exceptionality of continuous coexistence is in line with a result of May [28,29]
concerning the classical Lotka-Volterra competition model. It states that the range
of parameters allowing two strategies to coexist shrinks to zero as the difference
between the strategies goes to zero. The conclusion of May will be generalized for
arbitrary, but finitely, many strategies in a model-independent way elsewhere [32].
Here, we concentrate on the question of infinitely many strategies. If the coexistence
of similar strategies is constrained for a narrow range of parameters, coexistence
of a continuous set of them, or a set of them containing a limit point, should be
sensitive to an infinitesimally small perturbation. The purpose of the current paper
is to state and prove this assertion in a model-independent way.

It was shown by McGehee and Armstrong [31] that the principle of competitive
exclusion is valid only if a steady state is required for coexistence. Two species feed-
ing on a single resource may very well coexist if the inherent population dynamics
generates cyclic behaviour. In this paper we shall, however, stay within the realm of
steady states. In this case the definition of coexistence that is most widely used in
ecology is the one put forward by Armstrong and McGehee [6, p. 158]. According
to it, for a model given by a system of differential equations, a finite number of
species coexist at steady state if the system has an asymptotically stable equilibrium
with the sizes of all species strictly positive.

In our investigation of the possibility of infinitely many coexisting species it is
irrelevant whether the steady state is stable or not because we shall exclude coex-
istence by showing that a positive steady state is nonrobust in the sense that it will
not survive arbitrarily small perturbations of the model ingredients. As a matter of
fact, a perturbation of only the intrinsic growth rate suffices to destroy the steady
state. To fix the terminology we distinguish between coexistence and robust coex-
istence. Two or more species (or strategies, see below) are said to coexist if there is
a steady state of their combined population dynamics with the sizes of all species
strictly positive. The coexistence is considered to be robust if it survives any small
perturbation of the model ingredients.

We shall assume that the possible species are distinguished from each other by a
(heritable) “strategy” value, which can be multi-dimensional. No specific biological
interpretation of the strategy will be assumed.

One of our main theorems (Theorem 4) supposes that the feedback has a cer-
tain smoothening property called compactness. As we shall see, most biologically
realistic models comply with this hypothesis. In this case we demonstrate the impos-
sibility of robust coexistence of infinitely many strategies. As the assumption of
compactness does not hold for Roughgarden’s example, in which the interaction
is described by a convolution on the whole real line, we will discuss the case of
convolution separately. For this class of models we demonstrate the impossibil-
ity of robust coexistence of any strategy set containing a limit point, that is when
the strategy values are not well separated. In particular, a continuum of robustly
coexisting strategies is excluded.

On the other hand, if the strategies are separated and thus “sufficiently different”,
then an infinite number of robustly coexisting strategies would not immediately
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violate the principle of limiting similarity. In this case a new aspect enters the
scene: the finiteness of the population. If the strategy set is the whole real line it
makes sense to consider infinite populations (if there are infinitely many species
present the whole community may be infinite although each of the species is finite).
It turns out that for an infinity of discrete, equidistant strategies the distinction
between finite and infinite populations is crucial: robust coexistence is excluded in
the finite population case but possible in the infinite population case (Theorem 10).

Infinite populations and an infinite number of species are idealizations that are
useful for mathematical analysis. But, after all, we live in a finite world. The biolog-
ically relevant distinction is therefore not so much between “finite” and “infinite”
than between “few” and “many”. In Section 4.1 we therefore investigate under
what kind of interactions it is possible to give a finite upper bound for the number
of robustly coexisting species. The obtained result is then interpreted in terms of
the principle of competitive exclusion. Without any restrictions on the interaction,
nothing decisive can be said.

It is important to stress that, in most of the paper, we investigate a purely ecolog-
ical question rather than an evolutionary one. We consider a given set of coexisting
strategies and ask whether the coexistence is robust. With the assumption of com-
pactness we learn that the answer is in the negative for infinitely many strategies.
In contrast, the evolutionary question would reverse the order, that is, ask whether
there exists some infinite set of coexisting strategies for any parameter combination
in a given (small) parameter set. In this paper we answer the latter, more difficult
question, in the negative only in the convolution case with the additional condition
on analyticity (Theorem 8).

Section 2 defines the general framework of the investigation. Section 3 intro-
duces the concept of interaction operator and demonstrates that this operator is
compact under mild conditions. Section 4 provides the basic results both for com-
pact operators and for convolution operators. Section 5 discusses the Lotka-Volterra
case and the seed-size model of Geritz [13] as examples. The general picture emerg-
ing from our investigation will be discussed in the last section.

2. The general setting

2.1. Steady states of a single physiologically structured population

We consider a population structured by some physiological features like size and
age. The set of all admissible physiological states is denoted by �, which we shall
assume to be a locally compact Hausdorff space. The population state space is the
space M+(�) of all finite positive regular Borel measures on �. The σ -algebra of
all Borel sets in � is denoted by B(�).

The survival, development and reproductional behaviour of individuals are
assumed to depend on the environmental condition I , which is represented by an
element in a Banach space Z. If I is known as a function of time, then modelling the
individual processes mentioned above leads to a linear time dependent dynamical
system [10].Assuming that individuals affect their environment we have a feedback
mechanism eventually resulting in a nonlinear population model. Mathematically
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this means that there is a feedback function H : M(�) → Z mapping the present
population state to the present environmental condition:

I = H(m), m ∈ M(�). (2.1)

Diekmann et al. [11] showed that the steady state conditions of such a model
can be written as

{
b = L(I)b,

I = G(I)b,
(2.2)

where the unknowns are the steady environmental condition I ∈ Z and the vector
b is the steady birth rate measure. The interpretation of this is that b(ω) is the rate
at which individuals are born with state in the Borel set ω. The operator L(I) is
the next-generation operator: L(I)b gives the expected state-at-birth-distribution
of the offspring born to a set of individuals that were themselves born with state-
at-birth-distribution b, given steady environmental conditions as specified by I .
The individual feedback operator G(I) takes on values in Z and gives the lifetime
contribution to the environmental condition of individuals born with state-at-birth-
distribution b, given steady environmental conditions as specified by I .

The first equation in (2.2) reflects the fact that at steady conditions the state-at-
birth-distribution should remain the same from generation to generation. The latter
equation in (2.2) follows from (2.1) by the observation that at steady conditions an
individual is fully characterized by its state-at-birth and its age. As a consequence,
the steady population state m can be expressed in terms of b and the submodels
for individual development and survival. But these depend on the environmental
condition I ! Therefore m can be expressed in terms of b and I and we obtain the
second equation in (2.2) (for details, see [11]).

The first equation in (2.2) is an eigenvalue problem. The biological interpreta-
tion requires L(I) to be a positive operator, which we assume to be irreducible, and
so Perron-Frobenius theory implies that there is a unique positive eigenvalue R0(I )

(called the basic reproduction ratio) of L(I) which is dominant. The first equation
in (2.2) implies that if b �= 0, that is, we have a nontrivial steady state, then

R0(I ) = 1. (2.3)

Substituting (2.1) into (2.3) one obtains the following necessary condition for the
measure m to be a nontrivial steady state:

R0(H(m)) = 1. (2.4)

We emphasize that for structured populations this is only a necessary condition
for m to be a nontrivial steady population state: There may very well be a non-
steady population state m that gives rise to an environment I = H(m) for which
R0(I ) = 1. To see this, consider an age-structured model with I being the total
population size. Any measure concentrated on [a, ∞) with a > 0 is clearly not
steady, but it may well have a total size I such that R0(I ) = 1.



138 M. Gyllenberg, G. Meszéna

Unstructured models, in which � consists of only one point, are of course
included in the general framework and for these models (2.4) is also sufficient: The
basic reproduction ratio is

R0(I ) = β(I)

µ(I)
, (2.5)

withβ andµbeing the per capita birth and death rates, respectively. HenceR0(I )=1
if and only if β(I) = µ(I), and thus any m (which in this case can be represented
by a scalar) giving rise to an environment I = H(m) is a steady state.

The equation (2.4) can of course be written as r(m) = 0, with r(m) :=
R0(H(m)) − 1. A biologically more meaningul choice for r is the Malthusian
parameter. In applications R0(I ) is derived from more basic modelling ingredients
describing individual behaviour and from these the Malthusian parameter (or per
capita population growth rate) can be obtained by solving the so-called Euler-Lotka
equation (see [9] for details). In any case, the necessary steady state condition can
finally be brought into the form

r(m) = 0. (2.6)

As pointed out above, this condition is also sufficient in the case of unstructured
populations.

2.2. Strategy space and polymorphism

The purpose of this paper is to study the coexistence of different strategies. To
this end we introduce the set X of all admissible strategies and we assume that X
is equipped with a locally compact normal Hausdorff topology. For those readers
uninterested in technical details suffice it to mention that all countable discrete
spaces and all finite-dimensional Euclidean spaces (or, more generally, all finite
Cartesian products of closed intervals) have these properties. Normality is a sep-
aration condition meaning that disjoint closed sets have disjoint neighbourhoods.
It guarantees the existence of nonconstant continuous functions and is a necessary
and sufficient condition for Tietze’s extension theorem to hold: a continuous func-
tion defined on a closed subset can be continuously extended to the whole space
[12, p. 149].

An individual is now characterized by its physiological state y ∈ � and its
strategy x ∈ X . A population is polymorphic if at least two different types (indi-
viduals playing different strategies) coexist. As pointed out by Diekmann et al.
[10,11], the general framework of physiologically structured populations includes
the polymorphic situation of several interacting strategies; we simply have to take
the population state space as M+(X × �). If the population is physiologically
unstructured, then the population state space is M+(X ).

A basic assumption is that the reproduction is faithful with respect to strategy:
an individual of a certain type can only beget offspring of the same type. This means
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that the next generation operator L(I) acting on M(X ×�) has a “block-diagonal”
form (L(x, I ))x∈X . The necessary steady state condition (2.6) thus becomes

r(x, m) = 0 (2.7)

for all strategies x ∈ X that are present in the population.
For the case of only finitely many strategies, it is clear what this last condition

means, but for strategy sets having a limit point it needs a formal definition. We say
that the strategies in the open set E ⊂ X are not present in the population described
by the measure m ∈ M(X × �) if m(E × �) = 0. We define the set X̂ (m) ⊂ X
of all strategies present in the population as the complement of the union of all
open sets E ⊂ X of strategies not present. The set X̂ (m) is obviously closed. For
unstructured populations X̂ (m) is simply the support supp(m) of m ∈ M+(X ).

In most cases it is natural to assume that the total number of individuals is finite
and so far we have done so by taking the population state space as M+(X ×�), the
positive cone of the Banach lattice M(X × �) of all finite signed Borel measures
on X with the total variation norm. If the strategy space is noncompact, say the
whole Euclidean space Rp, then it makes sense to consider infinite communities
even if each “local” subpopulation (the individuals with strategy in a compact set)
is finite. Measures describing such communities are not finite. In order to still get
a Banach space, we have to control the behaviour of the measures at infinity of
the strategy space, that is, outside sufficiently large compact subsets of the strategy
space. The easiest way out is to introduce a weight function. By a weight function
on X we understand any continuous, strictly positive function w defined on X . If
w is a weight function, we denote by M(X ×�, w) the vector space of all regular
signed Borel measures µ on X × � such that the signed measure

ω �→
∫

ω

w(x)dµ (2.8)

is of bounded variation. The norm ‖µ‖w of µ in M(X ×�, w) is given by the total
variation of the measure in (2.8) and makes M(X × �, w) into a Banach space.
Note that M(X ×�, 1) = M(X ×�) and if X is compact, then M(X ×�, w) =
M(X × �) so there is no need for a weight function. When w = 1 we omit the
subscript from the norm.

3. Interaction operators

One can always formally rewrite the necessary steady state condition

r(x, m) = 0 for all x ∈ X̂ (m) (3.1)

as

(Am)(x) = r0(x) for all x ∈ X̂ (m), (3.2)

where r0 is a function on X and

(Am)(x) = r0(x) − r(x, m). (3.3)
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However, in many applications the form (3.2) arises naturally from modelling with
r0(x) being the density independent growth rate of strategy x and (Aν)(x) describ-
ing how interaction affects the growth rate of strategy x. We assume that r0 ∈ C(X ),
the Banach space of all bounded continuous real valued functions on X equipped
with the supremum norm, and that A maps M+(X × �, w) into C(X ).

In a virgin, that is, population free, environment there is no interaction. There-
fore A(0) should equal 0, but this assumption is of no relevance for our analysis. In
many cases it is natural to assume that r0(x) is positive for all x in X – a strategy
with negative density independent growth rate cannot invade a virgin environment.
But for instance when an Allee effect is present a strategy x may well be viable
even if r0(x) is negative. We shall therefore not make any general assumptions
concerning the sign of r0 but state such assumptions later on when relevant.

The mapping A : M+(X × �, w) → C(X ) will be referred to as the interac-
tion operator. If all interaction is competitive, then A(µ)(x) is positive for all x in
X , but we want to include the possibility of cooperation and therefore we do not
make any assumptions concerning the sign of A(µ)(x).

We stress that our treatment is not restricted to linear interaction operators.
However, as pointed out by Diekmann et al. [10], in many population models the
nonlinear feedback has a certain hierarchical structure in terms of linear operators,
which we shall now briefly describe.

Let Z1, Z2, . . . , Zk and M be Banach spaces and assume that the mappings

L1 : M → Z1, (3.4)

Lj : Z1 × Z2 × · · · × Zj−1 × M → Zj , j = 1, 2, . . . k (3.5)

are linear in their last argument. Define the mappings Hj : M → Zj , j =
1, 2, . . . , k, recursively by

I1 = H1(ν) = L1(ν),

I2 = H2(ν) = L2(I1, ν), (3.6)
...

Ik = Hk(ν) = Lk(I1, I2, . . . , Ik−1, ν).

This construction yields a mapping H : M → Z1 × Z2 × · · · × Zk defined by
H(ν) = (H1(ν), . . . , Hk(ν)) for ν ∈ M. With M = M(X ×�, w) the nonlinear
interaction operator is then defined as

A = F ◦ H (3.7)

for some mapping F : Z1 × Z2 × · · · × Zk → C(X ).
One of our main theorems assumes that the interaction operator is compact.

We therefore give an easily verifiable condition that guarantees that the interaction
operator A obtained by the hierarchical setting (3.4) – (3.7) is compact. We start by
a (provisional) definition.
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Definition 1. Let Y, M and Z be Banach spaces. A map T defined on the Carte-
sian product Y × M with values in Z is called skew-compact if the closure of
T (U ×V ) is a compact subset of Z whenever the closure of U is compact in Y and
V is bounded in M.

Theorem 1. Assume in the hierarchical setting of (3.4) – (3.7) that L1 is compact
and Lj is skew-compact in the sense of Definition 1 with Y = Z1 ×Z2 ×· · ·×Zj−1
for all j = 2, 3, . . . , k and that F : Z1 × Z2 × · · · × Zk → C(X ) is continuous.
Then A = F ◦ H is compact.

Proof. Let V ⊂ M be bounded. We have to show that A(V ) is precompact (that
is, that it has compact closure). We first show that Hj(V ) is precompact in Zj for
all j = 1, 2, . . . , k. Because L1 is compact, H1(V ) is precompact in Z1. Assume
that we have already shown that Hj−1(V ) is precompact. Then, by the definition
of skew-compactness, Hj(V ) = Lj (Hj−1(V ) × V ) is precompact in Zj . Mathe-
matical induction proves the claim.

Because the cartesian product of compact sets is compact, it follows that H(V )

is compact and because continuous functions preserve compactness we have that

A(V ) = F(H(V )) ⊂ F
(
H(V )

)
= F

(
H(V )

)
is compact. This completes the

proof. 	

It is well known that continuous kernels on compact spaces generate compact

linear integral operators. Next we prove that it follows from Theorem 1 that “pow-
ers” of linear integral operators are also compact. In applications to population
dynamics we have to assume that both the strategy space X and the physiological
state space � are compact. In the following theorems Y plays the role of X × �

Theorem 2. Suppose that X and Y are compact Hausdorff spaces. Let L ≥ 1 be
an integer and let a : X × YL → R be a continuous mapping. Then the operator
A : M(Y) → C(X ) defined by

(Aν)(x) =
∫

YL

a(x, y1, y2, . . . , yL)

L∏
i=1

ν(dyi), x ∈ X (3.8)

is compact and satisfies

‖Aν‖∞ ≤ ‖a‖∞‖ν‖L (3.9)

for all ν ∈ M(Y).

Proof. The operator A is obtained through the hierarchical structure
(3.4) – (3.7) by defining

I1 = L1(ν)(x, y2, y3, . . . , yL) =
∫
Y

a(x, y1, y2, . . . , yL)ν(dy1),

I2 = L2(I1, ν)(x, y3, . . . , yL) =
∫
Y

I1(x, y2, y3, . . . , yL)ν(dy2),

... (3.10)

IL = LL(IL−1, ν)(x) =
∫
Y

IL−1(x, yL)ν(dyL).
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Notice that the hierarchical structure is particularly simple in the present case, as
each Ij depends only on the immediately preceding Ij−1 and on ν. The compact-
ness of L1 is a classical application of Ascoli’s theorem. The skew-compactness of
Lj , j = 2, 3, . . . , L follows in exactly the same way from (3.10). Theorem 1 now
shows that A = πk ◦ H is compact (πk is the projection onto Zk). The estimate
(3.9) follows from (3.10) by induction. 	


In Section 5.2 we shall in connexion with a model of seed-size distribution
encounter an interaction operator that could be called a “power series” of integral
operators, that is, it is an infinite sum of operators of the type (3.8) with L ranging
from 1 to infinity. Next we shall give a criterion for compactness of sums of gen-
eral (nonlinear) interaction operators which immediately yields a corresponding
criterion for the “power series”.

Theorem 3. Let X and Y be compact and AL, L = 1, 2, 3, . . . a sequence of
operators from M(Y) to C(X ) with the property that for every integer L there
exist positive numbers dL and lL such that

‖ALν‖∞ ≤ dL‖ν‖L (3.11)

for every ν ∈ M(Y) and if ε > 0, every x ∈ X has a neighbourhood V such that
for all y ∈ V and all ν ∈ M(X )

|AL(ν)(x) − AL(ν)(y)| ≤ εlL‖ν‖. (3.12)

If for some positive number M one has

∞∑
L=1

dLML < ∞,

∞∑
L=1

lLML < ∞, (3.13)

then the series

A =
∞∑

L=1

AL (3.14)

converges absolutely (that is,
∑∞

L=1 ‖AL‖ converges) and defines a compact oper-
ator A on the closed ball of radius M and center 0 ∈ M(Y). In particular, if (3.13)
holds for all M > 0, then A is compact on all of M(Y).

Proof. The estimate (3.11) together with the convergence condition (3.13) give
absolute convergence of the series in (3.14) and boundedness of the image of the
ball of radius M . Condition (3.12) yields equicontinuity and Ascoli’s theorem com-
pletes the proof. 	

Corollary 1. Suppose that X and Y are compact. Let M be a nonnegative real
number and let aL : X ×YL → R (L ∈ N) be a sequence of continuous mappings
with the following properties:



On the impossibility of coexistence of infinitely many strategies 143

(A) For each L ∈ N there exists dL ∈ R such that

|aL(x, y1, y2, . . . , yL)| < dL, x ∈ X , y1, y2, . . . , yL ∈ Y, (3.15)

∞∑
L=1

dLML < ∞. (3.16)

(B) For each L ∈ N there exists lL ∈ R ) such that for any ε > 0 and x ∈ X there
exists a neighbourhood V of x such that for each z ∈ V

|aL(x, y1, y2, . . . , yL) − aL(z, y1, y2, . . . , yL)| < εlL (3.17)

for y1, y2, . . . , yL ∈ Y , and

∞∑
L=1

lLML < ∞. (3.18)

Then the series

A(ν)(x) =
∞∑

L=1




∫

X L

aL(x, y1, y2, . . . , yL)

L∏
i=1

ν(dyi)


 . (3.19)

is absolutely convergent for all ν ∈ M(X ) with ||ν|| ≤ M and all x ∈ X and
defines a compact operator A on the closed ball of radius M in M(X ) with values
in C(X ).

Theorem 2 and Corollary 1 together establish that the interaction operator should
be compact basically for any meaningful model provided that the strategy space
itself is compact and the model is defined in a smooth way.

The case of Lotka-Volterra interaction mentioned in the introduction is of spe-
cial historical importance. In this situation Y = X and the interaction operator is
linear:

A(ν)(x) =
∫
X

a(x, y)ν(dy) (3.20)

As a special case of Theorem 2, this operator is compact, provided that the function
a is continuous and X is compact. However, the Lotka-Volterra interaction operator
defined by the convolution

A(ν)(x) = (a ∗ ν)(x) =
∫
R

a(x − y)ν(dy) (3.21)

on the real line R is not compact. To see this, consider the set of absolutely con-
tinuous measures νi(dx) = n(x − i)dx, n ∈ L1(R), i ∈ N and the corresponding
functions gi defined by gi(x) = A(νi)(x) = g(x − i). As the set {νi : i ∈ N} is
bounded in R by ‖n‖1, but the set {gi : i ∈ N} is not relatively compact in C(R), the
operator A is not compact. This forces us to use different methods, viz. harmonic
analysis, for Lotka-Volterra interaction operators of convolution type.
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4. Results

4.1. Compact operators

Before we state the main theorem of this section, we introduce some notation. Let
A : M(X × �) → C(X ) be the interaction operator introduced in Section 3. A
measure ν on X × � induces in an obvious manner a measure ν̂ on X̂ (ν) × �. We
define the operator Â : M(X̂ (ν) × �) → C(X̂ ) by the formula

(
Âν̂

)
(x) = (Aν) (x), x ∈ X̂ (ν). (4.1)

Theorem 4. Suppose that the interaction operator A : M(X × �) → C(X ) is
continuous and compact and that there exists a solution νe of (3.2) with an infinite
number of strategies present (X̂ (νe) an infinite set). Then for each ε > 0 there
exists an r ′

0 ∈ C(X ) such that

‖r0 − r ′
0‖∞ < ε (4.2)

and such that the equation (3.2) with r0 replaced by r ′
0 does not have a solution

ν with X̂ (ν) = X̂ (νe). If r0(x) > δ > 0 for all x ∈ X , then r ′
0 can be chosen

positive.

Proof. Suppose that X̂ (νe) is infinite. Then, C(X̂ ) is an infinite dimensional Banach
space and hence not locally compact. Let Ut be the ball of radius t in M. Because
Â is compact, the interior of the closure of Â(Ut ) is empty for all t > 0. It follows
that the range of Â is of the first category and hence has empty interior by Baire’s
theorem. As r̂0 is an element of the range of Â, there exists an r̂ ′

0 ∈ C(X̂ ) in an

arbitrarily small neighbourhood of r̂0 such that r̂ ′
0 is not in the range of Â, that is, no

solution of equation Â(ν̂) = r̂ ′
0 exists. Since X is normal, Tietze’s extension theo-

rem [12, p. 149] implies that there exists ϕ ∈ C(X ) such that ϕ(x) = r̂ ′
0(x)− r̂0(x)

for x ∈ X̂ . Tietze’s theorem contains the statement that if the original function (in
our case r̂ ′

0(x) − r̂0(x)) has absolute value less than ε, then the extension ϕ can be
chosen such that |φ(x)| < ε for all x ∈ X . Therefore

r ′
0(x) = r0(x) + ϕ(x), x ∈ X

constitutes the perturbed growth rate the existence of which was claimed.
Finally, if r0(x) > δ > 0 for all x ∈ X , then we choose r̂ ′

0 at most at a distance
δ/2 from r0. This proves the last statement. 	


A special class of compact operators is formed by operators, the range of which
is a finite-dimensional manifold. If the interaction operator belongs to this class we
can give an upper bound to the number of coexisting species.

Theorem 5. Suppose that the range of the interaction operator A is a p-dimen-
sional manifold in C(X ). Then no collection of L > p strategies can coexist
robustly at equilibrium.
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Proof. By assumption, A has the form

A(ν)(x) = φ(I1, I2, . . . , Ip, x) = φ(λ1(ν), λ2(ν), . . . , λp(ν), x), (4.3)

where φ is a continuous function from the Cartesian product of a subset of Rp and X
into R and Ij = λj (ν) is a continuous real valued function for each j = 1, 2, . . . , p.

If X̂ (ν) is finite: X̂ (ν) = {x1, x2, . . . , xL}, then we obtain the following L

equilibrium conditions:

φ(I1, I2, . . . , Ip, x1) = r0(x1),

... (4.4)

φ(I1, I2, . . . , Ip, xL) = r0(xL).

Being a system of L equations in p unknowns (4.4) does not have any solutions
that survive arbitrarily small perturbations of r0 if L > p. 	


Theorem 5 is in fact nothing more than a reformulation of the principle of
competitive exclusion with limiting factors Ij . In many models the Ij ’s can be
interpreted as resource concentrations, whereas the function λj describes the strat-
egy dependent utilization of the j th resource (often via time scaling arguments).
Thus we are back to the resource competition interpretation of MacArthur & Levins
[26]. However, as Diekmann et al. [11] did, we stress that the interpretation of the
variables Ij is irrelevant for Theorem 5 to hold.

If the interaction operator has infinite-dimensional range, nothing can be said
in general, not even if the interaction operator is linear. It is possible that at most
one species can exist robustly and that an arbitrarily large (but finite) number of
species can coexist robustly. The following examples (for unstructured populations)
illustrate this.

Example 1. Let X = [0, 1] and consider the linear interaction operator A : M
[(0, 1)] → C[0, 1] given by

(Aν)(x) =
∫ 1

0
a(x, y)ν(dy) x ∈ [0, 1] (4.5)

for some continuous positive kernel a. Assume that a cannot be expanded as a finite
sum a(x, y) = ∑p

i=0 αi(x)βi(y). Then A defined by (4.5) has infinite-dimensional
range. Assume further that

a(x2, y) > a(x1, y) whenever x2 > x1 (4.6)

and take r0(x) = 1. Two competing strategies x1 < x2 lead to the equilibrium
condition

a(x1, x1)n1 + a(x1, x2)n2 = 1,

a(x2, x1)n1 + a(x2, x2)n2 = 1
(4.7)

for the measure ν = n1δx1 +n2δx2 . But the assumption (4.6) implies that the system
(4.7) has no solution in the interior of R2+. Hence two strategies cannot coexist.
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This example is of course nothing else than the standard Lotka-Volterra model of
competition between two species. Our condition (4.6) means that the species with
the smaller strategy value is dominant and will outcompete the other species [20,
p.56].

Example 2. Like in Example 1 we take a linear interaction operator of type (4.5)
on X = [0, 1], but with a convolution kernel a(x, y) = a(x − y) given by

a(x) = 1 − |x|. (4.8)

As intrinsic growth rate we choose

r0(x) = 1 −
(

x − 1

2

)2

. (4.9)

Consider now L + 1 competing equidistant strategies {0, 1/L, 2/L, . . . , (L −
1)/L, 1} ⊂ [0, 1]. The equilibrium condition now becomes a system of linear
equations conveniently written as

An = r, (4.10)

where A is an (L + 1) × (L + 1) matrix with entries

aij = 1 −
∣∣∣∣ i − j

L

∣∣∣∣ , i = 0, 1, . . . , L, j = 0, 1, . . . , L, (4.11)

and r the vector with components

ri = 1 −
(

i

L
− 1

2

)2

, i = 0, 1, . . . , L. (4.12)

An easy computation shows that A is invertible for all L (in fact, det A = 2L

LL ) and
that the solution of (4.10) is the vector n with components

n0 = nL = L + 2

4L
, n2 = n3 = · · · = nL−1 = 1

L
. (4.13)

We have now shown, that for every L, the system (4.10) has a unique strictly positive
solution. A sufficiently small perturbation of r0 cannot destroy this. It follows that
an arbitrary finite number of strategies can coexist robustly.

4.2. Convolution operators

As convolution defined on the whole real line is not compact, this case has to be
discussed separately. From now onwards we shall exclusively consider unstruc-
tured populations. There will therefore be no need for the physiological state space
� and individuals are fully characterized by their strategy x ∈ X . The population
state is now a measure ν on X and X̂ (ν) = supp(ν).



On the impossibility of coexistence of infinitely many strategies 147

We assume that a and r0 are given real valued continuous functions defined on
the whole real axis and consider the interaction operator defined by Eq. (3.21). For
the strategy distribution ν ∈ M+(R, w), the equilibrium condition reads

(a ∗ ν)(x) = r0(x) for all x ∈ supp(ν). (4.14)

We shall consider three special cases. In the first we assume that the equilibrium
distribution ν has supp(ν) = R. Then, we investigate the more general possibility
that the support has a limit point. Finally, we consider measures concentrated on a
discrete subgroup of R, which we, without loss of generality, take as the group Z
of integers.

As mentioned in Section 2.2 it makes sense to consider not necessarily finite
measures when the strategy space is the whole real line. Because the assumptions
on the ingredients are slightly different depending on whether we take the finite
measures (w = 1) or a class of infinite measures as population state space, we shall
treat these cases separately. As a matter of fact, also the results depend on the state
space! It turns out that in the discrete case robust coexistence of infinitely many
strategies is possible if we drop the requirement of finite populations.

In the first case the equilibrium condition (4.14) takes the form

(a ∗ ν)(x) = r0(x) for all x ∈ R. (4.15)

We start by investing the case of finite measures. Intuitively, competition is weak
between strategies that are far away from each other. Hence a(x) should decrease to
zero as |x| → ∞. Therefore it makes sense to assume that a ∈ L1(R). Because the
convolution of an L1-function and a measure ν ∈ M(R) is again an L1-function,
we see that (4.15) can hold only if r0 is in L1(R) and we shall therefore make this
assumption.

Next we prove a general result regarding Equation (4.15). The nonrobustness
of a continuum of coexisting strategies will follow immediately.

Theorem 6. Let r0 and a be continuous real valued absolutely integrable functions
on R. If Equation (4.15) is satisfied by ν ∈ M+(R), then there exists an arbitrarily
small (both in the supremum norm and in the L1-norm) perturbation of r0 such that
Equation (4.15) has no solution in M+(R). If r0 is positive, then the perturbed
growth rate r ′

0 can also be chosen positive.

Proof. Taking the Fourier transformation of Equation (4.15) one obtains

ν̃(z) = r̃0(z)

ã(z)
(4.16)

for all z ∈ R for which ã(z) �= 0. By the Riemann-Lebesgue lemma the Fourier
transform ã is continuous on R and vanishes at infinity. We can therefore choose a
sequence zk of real numbers such that

ã(zk) �= 0, lim
t→∞ ã(zk) = 0. (4.17)
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Define

r ′
0(x) = r0(x)

(
1 + ε′ cos zkx

)
(4.18)

where ε′ < ε
2 min{1/‖r0‖1, 1/‖r0‖∞}. Note that ||r ′

0 − r0||1 ≤ ε, ||r ′
0 − r0||∞ ≤ ε

and that r ′
0 is positive if r0 is. The Fourier transform of r ′

0 is

r̃ ′
0(z) = r̃0(z) + ε′ (r̃0(z − zk) + r̃0(z + zk)) . (4.19)

If there exists a solution ν′ of Equation (4.15) with r0 replaced by r ′
0, then its Fourier

transform satisfies

ν̃′(z) = r̃0(z) + ε′ (r̃0(z − zk) + r̃0(z + zk))

ã(z)
. (4.20)

In particular,

ν̃′(zk) =
(

1 + ε′ r̃0(2zk)

r̃0(zk)

)
ν̃(zk) + ε′ r̃0(0)

ã(zk)
. (4.21)

As r̃0(zk) → 0 and ã(zk) → 0 for k → ∞ and ν̃ is bounded, the absolute value of
the right hand side of (4.21) can be made arbitrarily large at z = zk by choosing k

large enough. On the other hand, it follows form (4.20) that

ν̃′(0) ≤ ν̃(0) + 2ε

|ã(0)| (4.22)

independently of k. Consequently, for any ε, one can choose k to violate the inequal-
ity

|ν̃′(zk)| =
∣∣∣∣∣∣

∞∫
−∞

e−ikxν′(dx)

∣∣∣∣∣∣ ≤
∞∫

−∞
|e−izkx |ν′(dx) =

∞∫
−∞

ν′(dx) = ν̃′(0),

(4.23)

which holds for all ν′ ∈ M+(R). 	

We now turn to the case of not necessarily finite measures. To ensure that the

convolution on the left hand side of (4.15) exists for all x ∈ R we must impose
stronger conditions on the decay at infinity of the kernel a. A simple way out is to
observe that if ν ∈ M(R, w) with w(x) = (1 + x2)−k for some positive integer k,
then ν is a tempered distribution and that the convolution of a rapidly decreasing
function and a tempered distribution is a well defined continuous function (actually
a C∞-function). Recall that Roughgarden [35] used the Gaussian kernel which is
indeed rapidly decreasing, so our treatment covers Roughgarden’s example.

Theorem 7. Let a �= 0 be a rapidly decreasing function and r0 a continuous func-
tion on R. Assume that ν ∈ M(R, (1 + x2)−k)+ for some positive integer k and
that ν satisfies (4.15). Then for every ε > 0 there exists a continuous function r ′

0
such that sup{|r0(x) − r ′

0| : x ∈ R} < ε and such that Equation (4.15) with r0
replaced by r ′

0 does not have a solution in M(R, (1 + x2)−k)+ for any positive
integer k. If r0 is positive, then the perturbed growth rate r ′

0 can also be chosen
positive.
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Proof. Let φ be the “tent function” defined by φ(t) = 1 − |t | for t ∈ [−1, 1] and
φ(t) = 0 outside that interval. The Fourier transform of φ is given by

φ̃(z) = c
1 − cos z

z2 , (4.24)

where c is a normalization constant. Assume that ν is a solution of

a ∗ ν = φ. (4.25)

Then its Fourier transform satisfies

z2ã(z)ν̃(z) = c(1 − cos z). (4.26)

Because a is rapidly decreasing, the same is true of its Fourier transform ã. It fol-
lows that the function z �→ zkã(z) is rapidly decreasing for all positive integers
k, in particular for k = 2. Because the right hand side of (4.26) is not integrable,
neither is the left hand side. Hence ν̃(z) does not define a linear functional on the
rapidly decreasing functions, that is to say, ν̃ is not a tempered distribution. As
the Fourier transform of a tempered distribution is again a tempered distribution,
it follows that ν is not tempered, hence does not belong to M(R, (1 + x2)−k) for
any k.

We have now shown, that (4.25) does not have a solution in M(R, (1 + x2)−k)

for any k. The theorem now follows by taking r ′
0 = r0 − εφ. To see this just notice

that if r0 is positive, there exists an interval on which r0(x) > 2ε for some ε > 0.
By suitable translation and scaling, this interval can be taken as [0, 1]. 	


Theorems 6 and 7 immediately imply that if there exists an equilibrium mea-
sure (finite or not) supported on the whole real line, then there exists an arbitrarily
small perturbation of the intrinsic growth rate leading to a situation in which no
equilibrium supported on the whole real axis can exist. It is of course perfectly
possible that the perturbed system has an equilibrium supported on some smaller
subset of R.

If we assume that kernel a and the intrinsic growth rate r0 are analytic we obtain
a much stronger result.

Theorem 8. Assume that the functions a and r0 of Theorem 6 are analytic, that is,
can be extended to holomorphic functions in some open set of the complex plane
containing the real axis. If there exists an equilibrium solution ν ∈ M+(R), the
support of which has a limit point in R, then there exists an arbitrarily small (both
in the supremum norm and in the L1-norm) perturbation of r0 such that the per-
turbed system has no equilibrium with support having a limit point. In particular,
no equilibrium of the perturbed system can have supp(ν) as its support. If r0 is
positive, then the perturbed growth rate r ′

0 can also be chosen positive.

Proof. Because Equation (4.14) holds for all x ∈ supp(ν) and supp(ν) has a limit
point, it follows from the uniqueness theorem for analytic functions that both sides
of the equation are equal for all x ∈ R, that is, (4.15) holds. It now follows from
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the proof of Theorem 6 that we can find an arbitrarily small analytic perturba-
tion r ′

0(x) = r0(x)(1 + ε′ cos zkx) of r0, such that (4.15) does not hold for any
ν′ ∈ M+(R). Applying the uniqueness theorem once more we find that equality
cannot hold in any subset having a limit point, in particular not in supp(ν). 	


Note that this Theorem, with its more restrictive conditions, says much more
than the preceding results (Theorems 4, 6 and 7). While these theorems state the
existence of a perturbation destroying coexistence of a pre-defined set of strategies,
Theorem 8 demonstrates the non-coexistence of any set of strategies with a limit
point.

We now turn to the case in which the support of ν is concentrated on Z, that is,
ν has the form

ν =
∑
j∈Z

nj δj , (4.27)

where δj is the Dirac measure (point mass) concentrated at the point j ∈ Z. We
start by considering the case of a finite total population, that is, the case in which
n = {

nj

} ∈ 1(Z). Define the sequences a = {
aj

}
and r = {

rj
}

in 1 = 1(Z) by

aj = a(j) and rj = r0(j). (4.28)

The equilibrium condition (4.14) now takes the form of a convolution equation on
1:

a ∗ n = r, (4.29)

with the convolution in 1 defined by

(a ∗ b)i =
∑
j∈Z

ai−j bj . (4.30)

Theorem 9. Let a ∈ 1, a ≥ 0 and assume that a is not concentrated at a single
point. Let r ∈ 1 and assume that n ∈ 1, n > 0 satisfies the equilibrium condition
(4.29). Then to each ε > 0 there exists an r ′ ∈ 1 with ‖r − r ′‖1 < ε such that the
equation

a ∗ n′ = r ′ (4.31)

has no solution n′ in 1 with n′ > 0. If r > 0, then r ′ can be chosen such that
r ′ > 0.

Proof. The Fourier transform of an element in 1 is a continuous function on the unit
circle or, equivalently, a continuous 2π -periodic function. According to Wiener’s
lemma (see e.g. [12], Theorem 11.6) a ∈ 1 is invertible in the convolution algebra
1 if and only if the Fourier transform ã(θ) does not vanish for any θ ∈ [0, 2π ].
We therefore distinguish between two cases: (a) ã(θ0) = 0 for some θ0 ∈ [0, 2π ]
and (b) ã(θ) �= 0 for all θ ∈ [0, 2π ].

(a) Since a is not invertible in this case it is clear that there is an r ′ arbitrarily
close to r such that Equation (4.31) has no solution n′ ∈ 1. That r ′ can be chosen
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positive if r is positive is also clear: Simply choose r ′ = r + εδ0. Then r̃ ′(θ0) = ε

and the only candidate for a solution would have Fourier transform ñ′ = r̃ ′/ã. But
this function has a singularity at θ0 and hence cannot be the Fourier transform of
an element of 1.

(b) In this case the Equation (4.31) has a unique solution n′ ∈ 1 for all r ′ ∈ 1.
We have to show that we can choose r ′ such that n′ is not positive.

Let ρ ∈ 1 be the unique solution of

a ∗ ρ = δ0. (4.32)

Because of the nonnegativity of a one has |ã(θ)| ≤ ã(0) for all θ ∈ [0, 2π ].
Therefore

|ρ̃(θ)| = 1

|ã(θ)| ≥ 1

ã(0)
= ρ̃(0) (4.33)

for all θ ∈ [0, 2π ]. If ρ is nonnegative, then (4.33) implies that

|ρ̃(θ)| = ρ̃(0) (4.34)

for all θ ∈ [0, 2π ]. We claim that (4.34) can hold only if ρ is a multiple of δk for
some k ∈ Z. To see this, assume without loss of generality that ρ̃(0) = 1 and notice
that 2(Z) ⊂ 1(Z). Then, by Plancherel’s theorem

∑
n∈Z

ρ2
n = 1

2π

∫ 2π

0
|ρ̃(θ)|2 dθ = 1 =

∑
n∈Z

ρn, (4.35)

which is possible only if precisely one of the numbers ρn is equal to one and the rest
are zero. This proves the claim which in turn by (4.32) implies that a is a multiple
of δk for some k ∈ Z. But this is excluded by the hypothesis. It follows that ρ has
at least one negative component. It follows that the unique solution of (4.31) with
r ′ = r + εδk , which is given by

n′ = ρ ∗ (r + εδk) = n + ερ ∗ δk (4.36)

must have a negative component for k sufficiently large. 	

Finally we consider the case of not necessarily finite measures concentrated on

Z. However, we restrict our investigation to measures that are representable by a
sequence in ∞. As the convolution between an element in 1 and ∞ is in ∞ we
shall assume that r ∈ ∞.

Theorem 10. Assume that a ∈ 1, ã(θ) �= 0 for all θ ∈ [0, 2π ], r ∈ ∞ and that
n ∈ ∞+ satisfies the discrete convolution equation (4.29).

(a) If a ≥ 0, a is not concentrated in a single point and inf n = 0, then for
every ε > 0 there exists an r ′ ∈ ∞, ‖r − r ′‖∞ < ε, such that (4.29) has no
solution in ∞+ . If r > 0, then one can choose r ′ > 0.

(b) If inf n > 0, then there exists an ε > 0 such that for all r ′ ∈ ∞, r ′ > 0
with ‖r − r ′‖∞ < ε the equation (4.29) with r replaced by r ′ has a unique solution
n′ ∈ ∞, n′ > 0.
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Proof. (a) An inspection of the proof of Theorem 9 (b) shows that we only used that
n had arbitrarily small components, that is, the assumptions of the present claim.

(b) Let ρ ∈ 1 be the resolvent of a, that is, the unique solution of (4.32). Then
n = ρ ∗ r and n′ = ρ ∗ r ′ are the unique solutions of the convolution equation with
growth rates r and r ′, respectively. The inequality

‖n − n′‖∞ ≤ ‖ρ‖1‖r − r ′‖∞ (4.37)

shows that the claim is valid with ε = inf n/‖ρ‖1. 	


5. Examples

5.1. Lotka-Volterra model of competition

Roughgarden’s example of continuous coexistence [35] fits into our framework of
Section 4.2 if one chooses the Gaussian functions

r0(x) = e
− x2

2w2 , x ∈ R, (5.1)

and

a(x) = e
− x2

2σ2 , x ∈ R, (5.2)

for the intrinsic growth rate and the convolution kernel, respectively.
The Gaussian measure ν(dx) = n(x)dx determined by the density

n(x) = w/σ√
2π(w2 − σ 2)

e
− x2

2(w2−σ2) (5.3)

is an equilibrium solution (Fig. 1a). This is an example of continuous coexistence.
By Theorem 6 we know that it is nonrobust. It is, however, instructive to demonstrate
this directly for this particular example.

Following the proof of Theorem 6, consider the cosine perturbation

r ′
0(x) = r0(x) (1 + ε cos kx) , (5.4)

where 1 > ε > 0, k > 0 are reals numbers. (Note, that r ′
0(x) > 0 for any x ∈ R.)

One can determine the equilibrium solution by deconvolution of r ′
0:

n′(x) = w/σ√
2π(w2 − σ 2)

e
− x2

2(w2−σ2)

[
1 + ε e

+ w2σ2

2(w2−σ2)
k2

cos

(
w2

w2 − σ 2 kx

)]
.

(5.5)

Observe, that the perturbation of the density scales up exponentially with k2. Figure
1b demonstrates this sensitivity of the density to the cosine perturbation of r0. The
condition of positivity of n′(x) on the whole real line is clearly violated.
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Fig. 1. Coexistence in the Lotka-Volterra competition model. Left plots: the intrinsic growth
rate r0(x) (solid line) and the competition kernel a(x) (dotted line). Right plots: the equilib-
rium population density, as calculated on the whole real line by de-convolution. Top row:
Gaussian r0. This is Roughgarden’s example for continuous coexistence. Middle row: Peri-
odic perturbation of r0 according to equation (5.4). The equilibrium density experiences high
perturbation and it is no longer positive on the whole real line. Bottom row: The intrinsic
growth rate r0 is perturbed by a small, narrow Gaussian according to equation (5.6). An
equilibrium density function on the whole real line no longer exists.

It is interesting to consider another perturbation, too, which is biologically more
meaningful. Perturb r0 by a small, narrow Gaussian:

r ′′
0 (x) = e

− x2

2w2 + ε e
− x2

2v2 . (5.6)

For σ > v, no solution satisfying r0 = a ∗ n exists, independently of the positivity
condition.

The biological interpretation of this kind of perturbation is that a group of strat-
egies earns some additional advantage relative to their original quality. Such an
extra advantage destroys the continuous coexistence because the strategies gaining
the advantage outcompete the other strategies in a finite range of strategies. The
effect of an additional drawback of a group of strategies is similar.

Compare now the two kinds of perturbations from a mathematical point of view.
The perturbation (5.4) demonstrated, that the positivity condition can be violated
by an arbitrarily small perturbation because a small perturbation in r0 can cause an
arbitrarily large perturbation in n. On the other hand, the convolution operator is
not invertible in L1. The perturbation (5.6) demonstrates this noninvertibility.
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5.2. Coexistence of different seed-sizes

5.2.1. Model definition
Evolution of seed-size of plants has been investigated by Geritz [13,14] and by
Geritz et al. [17,18]. We present the model in a different notation consistent with
the one used in the present paper. Competition between plant species with synchro-
nous reproduction is considered. The inherited strategy x is interpreted as the size
of the seeds. The environment consists of a large number of sites, each of them
is able to support a single plant individual. The probability that a seed survives
dispersal and the early seedling state is denoted by f (x). Exactly one of the seed-
lings still present at a given site becomes established according to a size-dependent
rule of competition. The total amount of per capita resource R available for seed
production is fixed, so a plant with strategy x produces R/x number of seeds. The
individual dies after seed production. Thus the strategy space is X = (0, R] and
the effective number of seeds produced by a plant with strategy x ∈ X is f (x)R/x.

Two versions of the model have been presented in the literature. They differ
only in the rules of competition. In the first version [13], the seedling with the larg-
est seed-size always wins the competition within the site. This kind of competition
is referred to as “extreme asymmetric competition” to recognize the fact that an
arbitrarily small difference in seed-size decides the competition unequivocally.

In the second version of the model [18], the competitive ability of seed-size x is
described by an increasing continuous function c(x). The probability that a given
seedling with seed-size x wins the competition for the site is

c(x)

c(x) + ∑L
i=1 c(yi)

(5.7)

where L ≥ 0 is the number of its competitors and y1, y2, . . . , yL are the seed-
sizes of the competitors. In this case of “nonextreme competition”, the outcome of
competition is random if the seed-size differences are small.

The first version of the model supports continuous coexistence [13], while the
second one does not [18]. In the next subsection we show that, in accordance with
the theory presented above, the interaction operator of the model is compact in the
nonextreme asymmetric case but noncompact in the extreme asymmetric case.

5.2.2. Growth function of the model
Consider an arbitrary distribution of seed-sizes given by the measure ν ∈ M+(X ).
The number ν(ω) is the expected number of seedlings in a specific germination site
with size in the set ω ∈ B(X ). Then,

N =
∫

ν(dx) = ν(X ) (5.8)

is the expected total number of seedlings and ν(ω)/N is the probability that a given
seedling belongs to the size class ω. (In (5.8) and in the rest of this subsection all
integrals are taken over the whole strategy space X = (0, R]). On the other hand,
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P(L) = NL

L!
e−N (5.9)

is the probability of having exactly L number of seedlings in a site.
Suppose that the number of seedlings in a specific site is L and label the seed-

lings by the indices 1, 2, . . . , L. The probability that the 1st, 2nd, . . . , Lth seedling
belongs to the size classes ω1, ω2, . . . , ωL, respectively, is

ν(ω1) ν(ω2) · · · ν(ωL)

NL
. (5.10)

Denote the survival probability of a seedling of size x, provided that the site contains
L number of further seedlings with sizes yi (i = 1, . . . , L), by

bL(x, y1, y2, . . . , yL). (5.11)

Then the expected survival probability of a seedling of size x is∫
· · ·

∫
bL(x, y1, . . . , yL)

ν(dy1) · · · ν(dyL)

NL
(5.12)

conditional that the number of seedlings other than the focal one is L. Taking into
account distribution (5.9) and the other fitness components, the expected number
of established offsprings per plant with seed-size x is

λ(x, ν) = f (x)
R

x
e−N

∞∑
L=0

1

L!

∫
· · ·

∫
bL(x, y1, y2, . . . , yL) ν(dy1) · · · ν(dyL).

(5.13)

(By the nature of the Poisson distribution, the probability of having L additional
seedlings is the same as having L of them in total.)

In the nonextreme asymmetric case, substitution of

bL(x, y1, y2, . . . , yL) = c(x)

c(x) + ∑L
i=1 c(yi)

(5.14)

into (5.13) leads to the growth function

λ(x, ν) = f (x)
R

x
e−N

∞∑
L=0

1

L!

∫
· · ·

∫
c(x)

c(x) + ∑L
i=1 c(yi)

ν(dy1) · · · ν(yL).

(5.15)

Note that substituting the discrete distribution

ν =
M∑
i=1

niδxi
(5.16)

into (5.15) one obtains the formula

λ(x, ν) = f (x)
R

x
e−N

∞∑
L=0

∑
∑

ki=L

c(x)

c(x) + ∑M
i=0 kic(xi)

n
k1
1 · · · nkM

M

k1! · · · kM !
, (5.17)
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which is Equation (7) of Geritz et al. [18]. Here, the multinomial coefficient

L!

k1! · · · · kM !
(5.18)

arises by matching the integration variables yi (i = 1, . . . , L) to the xi (i =
1, . . . , K) parameters of the Dirac measures in all possible ways during evaluation
of the integrals.

5.2.3. Compactness of the interaction operator
We consider first the nonextreme asymmetric competition with growth function

λ(x, ν) = f (x)
R

x
e−N

∞∑
L=0

1

L!

∫
· · ·

∫
c(x)

c(x) + ∑L
i=1 c(yi)

ν(dy1) · · · ν(yL).

(5.19)

This expression is a product of two power series of type (3.19), as the factor e−N =
e− ∫

n(dx) itself can also be expressed in such a form. Both series are absolutely
convergent. Consequently, the product can be re-expressed into a single series of
type (3.19) by the Cauchy rearrangement. The continuity of the function c(x) and
the convergence ensured by the factors 1/L! makes sure that the conditions of The-
orem 1 are met and the interaction operator of the nonextreme asymmetric model
version is compact. This is consistent with the finding of [18] that the nonextreme
asymmetric version of the model does not support continuous coexistence.

Otherwise, the interaction operator of the extreme asymmetric model is non-
compact, as functions bL are not continuous in this case. This is in line with the
fact that a continuous set of strategies can (robustly) coexist in this version of
the model [13]. Similarly to the case of Roughgarden’s example, the noncompact
interaction operator, which allows robust continuous coexistence, represents a bio-
logically unfeasible assumption. In reality, one cannot expect that an arbitrarily
small difference in seed-size decides the outcome of competition unequivocally.

6. Discussion

One of the most elementary facts of biology is that discreteness of the species is
the rule and continuity between them is the exception. There are three potential
explanations for this, none of them is sufficiently clear [30]:

1. Each species corresponds to a different peak of the fitness landscape.
2. Limiting similarity, that is, each species is adapted to a distinct ecological niche.
3. Separation between species is related to the genetics of sexual reproduction.

Maynard Smith & Szathmáry [30] disregard Explanation 2 because of Rough-
garden’s example of continuous coexistence. We have shown that this model is
structurally unstable, so it is biologically irrelevant. We argue, that ecology itself
dictates the discreteness of coexisting strategies.

In most biologically relevant cases, the strategy space is compact. This can be
interpreted as the very extreme strategies being nonviable. Then, the principle of
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limiting similarity makes it plausible to suppose that only a finite number of strate-
gies can coexist robustly because an infinite subset of a compact set necessarily has
an accumulation point and hence there will be arbitrarily similar strategies present.
Indeed, Theorem 4 guarantees just this.

The Lotka-Volterra competition model, defined on the whole real line via an
interaction operator of convolution type, was discussed separately. We showed that
coexistence is sensitive to perturbations oscillating with high frequency along the
strategy axis. Consequently, coexistence of a continuum of strategies cannot be
robust. Moreover, we showed that the existence of a limit point in the support of the
strategy distribution is enough to destroy the possibility of robust coexistence. This
latter conclusion is, again, in line with the concept of limiting similarity. In our last
theorems, we studied coexistence of an infinite number of equidistant strategies
on the real line. Because the strategies in this case are well separated the princi-
ple of limiting similarity does not exclude the possibility of an infinity of robustly
coexisting species. Still, the coexistence of infinitely many strategies is sensitive to
infinitesimal perturbation if the total population size is finite. The intuitive reason
is that in this case the majority of the strategies are present in very small numbers.
However, with the real line as strategy space it makes sense to consider infinite
populations and for these the above intuitive argument does not apply. And indeed,
we showed that robust coexistence of infinitely many discrete strategies is possible
for infinite populations.

Beyond the ecological problem of limiting similarity and Roughgarden’s coun-
terexample, our investigation was motivated by the work of Sasaki & Ellner [37]
and by the seed-size model of Geritz [13] and Geritz et al. [18]. Sasaki & Ellner [37]
considered mixed strategies in a fluctuating environment. Their criterion for ESS
mixing distribution is similar to the equilibrium condition (4.14), so their results are
comparable to ours. Similarly to our Theorem 7, they used the uniqueness theorem
of analytic functions to establish the discreteness of coexistence. The method of
[37] was applied to investigate the spatial distribution of plants by Sasaki [36] and to
establish the discreteness in a special form of Lotka-Volterra competition by Metz
et al. [33]. While the nonlinear seed-size model is beyond the reach of the approach
of [37], it behaves similarly: only a degenerate version of the model supports con-
tinuous coexistence. We provided the unifying view-point by requiring robustness
of coexistence and extended the results of Sasaki & Ellner [37] to a much larger
class of models, including models with nonlinear interaction operators.

Haccou and Iwasa [19] considered a model similar to the one of Sasaki &
Ellner [37] and investigated the cases with continuous ESS strategy distribution.
In response to the work of Sasaki & Ellner [37], they proved that the ESS distri-
bution of the strategies changes continuously in the weak∗ sense with respect to
the parameter changes. That is, despite the fact that the continuous distribution is
nongeneric, it approximates meaningfully the discrete distributions appearing near
to the continuous case. While we did not investigate this, it is natural to suppose
that such kind of continuity generalizes to the nonlinear case, as well. On the other
hand, as similar strategies can coexist only in a narrow rage of parameters, the gap
between the coexisting strategies should increase with increasing perturbation of
r0.
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The assumptions of a constant environment and a steady state of the population
dynamics played a central role in our investigation. Armstrong & McGehee [6] and
Abrams [2] emphasized the principle of competitive exclusion is violated if attrac-
tors other than steady states are allowed. On the other hand, Levins [25], Kisdi &
Meszéna [22] generalized the concept of “limiting factors” to stationarily fluctuat-
ing environments by including the statistical moments into the consideration, so it
is appealing to suppose that nongenericity of continuous coexistence generalizes
also to stationarily fluctuating situations.

The current paper concentrates on the ecological side of the discreteness prob-
lem of a species. Undoubtedly, the full picture should include the genetical aspects,
as well. In [34] A. Noest investigated the problem of a “sexual continuum”, that
is, whether coexistence of a continuum of genotypes is stable or not when partial
reproductive isolation is supposed. We should warn that this model, which allows
for continuous coexistence for asexual populations, is structurally unstable. The
problem is worth being re-investigated.
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