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Theoretical considerations suggest that extinction in dispersal-limited populations is
necessarily a threshold-like process that is analogous to a critical phase transition in
physics. We use this analogy to find robust, common features in the dynamics of
extinctions, and suggest early warning signals which may indicate that a population is
endangered. As the critical threshold of extinction is approached, the population
spontaneously fragments into discrete subpopulations and, consequently, density
regulation fails. The population size declines and its spatial variance diverges
according to scaling laws. Therefore, we can make robust predictions exactly in the
range where prognosis is vital, on the verge of extinction.
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Ecologists are aware of several factors that can cause

extinction in natural populations (man-made distur-

bance, pests, etc.). In the fortunate case, the areas of

extinction are smaller than the total area where the

species occurs, thus, local extinctions can be compen-

sated by the colonization of empty sites. How should the

rate of colonization relate to the rate of extinction to

ensure a persistent population? This question has been in

the focus of spatial ecology for decades (Durrett and

Levin 1994, Tilman and Kareiva 1997, Czárán 1998).

Studies on metapopulation dynamics have paid particu-

lar attention to the extinction�/colonization equilibrium

(Levins 1969, Keymer et al. 1998, Hanski 1999). In this

paper, we review how contact processes may contribute

to understanding population persistence by deducing the

biological problem to a well-studied phenomenon in

statistical physics, directed percolation. Then we suggest

extensions to more complex systems.

To start from a simple model, let us assume that the

area over which the colonization�/extinction processes

take place is very large, so that a single, local coloniza-

tion or extinction event causes only an infinitesimally

small change in the occupancy of the total area. The area

is divided into discrete sites (e.g. cells of a square lattice;

Fig. 1). Only two types of sites are distinguished: empty

or occupied. Occupied sites become empty by extinction

with a constant rate e. Empty sites become occupied

by colonization from neighbouring occupied sites with

rate c. Neighbourhood can be defined in various ways

according to the assumption about the ability of the

species to disperse propagula. We compare two dispersal

modes.

In the first case, the species has extremely far-

dispersing propagula so that any empty site can be

colonized from any occupied site (mean field model).

This is equivalent with the classical patch occupancy

model of Levins (Levins 1969, Keymer et al. 1998,

Hanski 1999). Changes in the density of the occupied

sites n over time t can be described by a basic equation in

metapopulation dynamics,
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dn(t)

dt
�cn(t)[1�n(t)]�en(t) (1)

The term in square brackets [. . .] expresses that only

empty sites can be colonized. Note that the equation is

formally equivalent with the classical, logistic equation

of population growth, ‘occupied sites’ replaced by

‘individuals’.

In the second case, dispersal is limited to a finite

distance. This is a plausible assumption, since dispersal

in most species is constrained in space (Begon et al.

1996). The simplest way to introduce dispersal limitation

in the square lattice is to restrict colonisation to the four

neighbouring cells. Interestingly, this basic population

dynamic model is exactly the same as a contact process

(CP) model (Levin and Pacala 1997, Snyder and Nisbet

2000, Ovaskainen et al. 2002), which has been studied

thoroughly in statistical physics (Marro and Dickman

1999, Hinrichsen 2000a). (See the Appendix about

Monte Carlo simulations of the CP.)

The CP was originally introduced for a general

purpose to investigate the spreading of localized effects

through neighbourhood contacts (Harris 1974). It has

been applied in epidemiology (Harris 1974, Anderson

and May 1991, Levin and Durrett 1996, Holmes 1997)

and in ecology, too, for modelling the spatial dynamics

of perennial plant species (Barkham and Hance 1982,

Crawley and May 1987, reviewed by Durrett and Levin

1994). In spite of its sporadic application so far, the CP is

a very basic model in ecology (Durrett and Levin 1994,

Levin and Pacala 1997, Snyder and Nisbet 2000): this is

the simplest spatial extension of the patch-occupancy

model and of the logistic model of population growth.

Vice versa, these well known ecological models are

equivalent with the mean field (MF) approximation of

the CP.

A comparison between the MF and the CP reveals

important messages about the importance of dispersal

limitation in population extinctions (Durrett and Levin

1994, Snyder and Nisbet 2000, Ovaskainen et al. 2002,

Franc 2003). Suppose that the conditions for living

worsen for any external reason (climate change, etc.)

and, consequently, c decreases and/or e increases. It is

convenient to use a single parameter, the spreading rate/

l�c=e that expresses the relative strength of two

competing processes, colonization vs extinction. As l
decreases, the equilibrium density of occupied sites, n,

declines. The MF and the CP show important differences

in n(l), and thus, in the dynamics of extinction (Fig. 2a).

The extinction threshold is considerably higher in the

CP: only a relatively high rate of colonisation can

compensate for local extinctions. The behaviours before

extinction also differ. In the MF, n reaches zero by a

slow, linear decrease (Eq. 1). In the CP, extinction is an

abrupt change that is analogous to a critical phase

transition in physics (Stanley 1971, Marro and Dickman

1999, Hinrichsen 2000a). As the extinction threshold lc

is approached, the equilibrium density n declines accord-

ing to a power law:

n8(l�lc)
b (2)

Monte Carlo simulations (Broadabent and Hammersley

1957, Marro and Dickman 1999, Hinrichsen 2000a) have

estimated that b�/0.583(4) in two dimensions (Fig. 2b).

The characteristic differences between the MF and the

CP suggest that dispersal limitation can seriously

threaten the viability of a low-density population.

The difference originates from the way of density

regulation. When l decreases, the number of empty sites

increases and, therefore, new sites become open for

colonization. In the MF, the empty sites are freely

available by dispersal; it is only the average density of

occupied sites that limits population growth (see the

term in square brackets in Eq. 1). In the CP, the

colonized site must be in the neighbourhood of the

colonizer, therefore, it is the local density around each

occupied site that matters. Local densities are statisti-

cally higher than the global density, because neighbour-

hood colonization causes clumping. The discrepancy

between local and global densities becomes especially

serious as extinction is approached (Snyder and Nisbet

2000). In the population in Fig. 1, the local densities

within the population fragments are still rather high,

whereas the population inhabits only a small part of the

area, exploiting only a small proportion of its carrying

capacity.

Vacant areas can be colonized only from the edges of

existing population fragments, which become more and

more scattered as extinction is getting near. The occur-

Fig. 1. Snapshot from a contact process, showing fragmenta-
tion of a population. The fragments are known to move by
branching-annihilating random walk (Hinrichsen 2000a).

292 OIKOS 109:2 (2005)



rence of large, unchanging, empty regions can be

detected by measuring autocorrelation distances in space

and time. Detailed analyses (Marro and Dickman 1999,

Hinrichsen 2000a) have shown that these quantities also

follow power-law behaviour:

j8(l�lc)
�n (3)

j is a distance (in space or time) beyond which the states

of cells can be considered uncorrelated. The scaling

exponent is ns�0:733(4) in space, and vt�1:295(6) in

time. The equation expresses that autocorrelation ex-

tends over the system, as lc is approached. At the

threshold of extinction, the distance goes to infinity

without bound, i.e. the autocorrelated region becomes

comparable to the system size. This result has important

implications for the stability of a population against

perturbations. Consider an infinitesimally small pertur-

bation: a local extinction event that can naturally occur

due to environmental or demographic stochasticity.

Equation 3 predicts that this small perturbation has

long-lasting effects wh lc en l is low. The self-regulating

ability of the population is weak at low values of l; and

fails completely when l�/lc.

The same problem becomes even more apparent when

we zoom in from the global population density to

regional densities in finite areas. Let us consider an

area A which is larger in linear extension than the

autocorrelation distance in space, and observe it for a

period of time that is longer than the autocorrelation

distance in time. Since the interdependence of sites is

negligible on this scale, we can apply the above-

mentioned power law for estimating the mean popula-

tion density: N̄8(l�lc)
b: A remarkable result is that

the variance of population density also follows a power

Fig. 2. Survival of a population critically depends on the
spreading rate (l). Averages from Monte Carlo simulations
are plotted by squares (basic contact process) or crosses
(heterogeneous environment contact process). Data in the basic
CP are reproduced from the literature (Marro and Dickman
1999, Hinrichsen 2000a); the results in the heterogeneous

environment CP are obtained from our model (Szabó et al.
2002). (a) The equilibrium density (n) declines as l decreases.
In the CP, extinction is a critical transition: there is a sharp
threshold, lc�/1.6488(1), where the derivative of n(l) is
infinite. In the corresponding Mean Field model (solid line),
extinction is a gradual process. The population density declines

as n(l)�
l� 1

l
; extinction starts at l�/1. (b) The decrease of n

at lc follows a power law, as demonstrated by a fitted straight
line on a log-log plot. In the basic CP (squares), the environ-
ment was homogeneous. In the heterogeneous environment CP
(crosses), the habitat consisted of good and bad patches, which
differed in the local rate of spreading (/lg�4; lb�/1, respec-
tively). We varied the proportion of good patches (p), and thus,
changed the average l�plg�(1�p)lb: Some fluctuation in
site qualities was permitted (good lattice cells turning into bad
or vice versa at random, with a rate 0.02). The simulations
yielded lc�/1.84765(5) for the critical theshold. The slopes of
both fitted straight lines are consistent with the theoretically
predicted scaling exponent of directed percolation, b�/0.583(4),
indicating that rather different population models may show the
same, universal behaviour at low population densities. (c) The
spatial variance of population density (V) goes to infinity as lc

is approached. The solid line shows the theoretically predicted
power law function.
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law (Broadabent and Hammersley 1957, Stanley 1971,

Harris 1974),

V8(l�lc)
�g=A (4)

where g�/0.35(1) (Fig. 2c; the area in the simulations

was A�/106). This sheds light on the very mechanism of

extinction. As the critical threshold is approached, the

population density declines, and at the same time, its

variance diverges. Thus, stochastic extinction becomes

increasingly probable. For any actual value of l�/lc, we

can find an area A that could provide a statistically good

chance for survival. But this area is increasing rapidly

with the decrease of l. An important message from the

theory is that even an infinitely large habitat cannot

maintain any persistent population at l5/lc.

These results suggest that estimating a population size

becomes increasingly difficult as the population is

getting near to extinction. Endangered populations

should be monitored for long periods of time because

of the divergence of V.

Equation 3 predicts that a dispersal-limited popula-

tion near to extinction consists of small subpopulations

fragmented in a fractal structure. The fractal dimension

is rather low, ns�0:733(4): The fragments are mobile in

space, split and merge in a random fashion, and do not

show any distinguished direction of motion (branching-

annihilating random walk; Hinrichsen 2000a). This

property may help to detect that a population is

endangered. Fractal structure, by itself, is not an

unequivocal indicator of the danger of extinction,

because it may also be caused by a fractal structure in

the environment (e.g. in the topography; Turner et al.

2001). In that case, however, the clumps of the popula-

tion do not tend to move away from suitable habitat

patches. Random motion can be clearly distinguished

from this situation.

Repeated mapping of a population can detect the

danger of extinction (l approaching lc) by the following

symptoms: 1) the spatial structure can be described by a

low-dimensional fractal of randomly moving clumps, 2)

there are large fluctuations in the population density,

and 3) the equilibrium is re-attained slowly after

perturbation. Power laws predict that symptoms 2 and

3 worsen rapidly as lc is approached. Provided that the

time of observation is sufficiently long for measuring

multiple points on an extinction curve (Eq. 2, 3 or 4),

even the exact distance from the threshold can be

determined by a linear regression on a log-log plot

(Fig. 2b).

If the system passes beyond the extinction threshold lc

the probability of extinction becomes 1. Starting from

any initial value, the population density declines expo-

nentially to zero. The half-life-time of the population

during the extinction process depends on l. This

dependence can also be described by a power law in

the vicinity of lc (Hinrichsen 2000a),

t1=28 jl�lcj
nt (5)

Note that the exponent is the same as in Eq. 3,

vt�1:295(6): Relaxation to an equilibrium state is the

same exponential process above and below the thresh-

old; the only difference is that the equilibrium is n�/0

above the threshold, and n�/0 below. The relaxation

time is infinite on the threshold: this is the borderline

between extinction and survival.

The power-law scaling of a suite of important

quantities indicates that dispersal-limited extinction is

a critical transition. The concept of critical transitions

originated from equilibrium thermodynamics to describe

liquid-gas, ferromagnetic and other continuous phase

transitions (Stanley 1971). A common feature in these

systems is that a continuous decrease of a control

parameter (now l) leads to a continuous, power-law

vanishment of an order parameter (now n); and fluctua-

tion (x), correlation length (j) and correlation time (t)
diverge at the critical point. The CP belongs to a

well defined universality class of critical phenomena:

directed percolation (Broadabent and Hammersley 1957,

Hinrichsen 2000a). Note that directed percolation differs

from isotropic percolation (Stanley 1971). The latter has

been used frequently for modelling habitat fragmenta-

tion in landscape ecology (Turner et al. 2001). ‘Directed’

in the context of the CP refers to percolation in the time

direction (i.e. we are interested in long term survival).

‘Universality’ is not an exaggeration: analyses have

shown (Broadabent and Hammersley 1957, Hinrichsen

2000b) that the values of the critical exponents do not

depend on the details of the model, only on the

dimensionality (which is D�/2 now). Geometry of the

lattice (square, triangle, honeycomb, etc.) can be freely

varied; even continuous space can be assumed without

any change in the values of exponents. The representa-

tion of states can also be extended from binary (empty vs

occupied) to other discrete or continuous variables

(Lande et al. 1998 and Foley 1997 extensions of the

Levins model). Details of the local interaction can also

be varied: assumptions about the finite neighborhood

(four cells, eight cells, etc.) or the introduction of

diffusion or any other short range random noise does

not influence the values of exponents. Only serious

modifications in the model structure can violate the

assumptions of the universality class, for example, if

special symmetries or pairs of occupied sites are needed

for the colonization (Hinrichsen 2000b, Henkel and

Hinrichsen 2004). Noest (1986) and later Dickman

and Moreira (1998) have warned that quenched disorder

crucially disturbs the critical transition. Quenched dis-

order means biologically that the habitat is patchy, and

the spatial pattern of patches does not change over time.

We have shown (Szabó et al. 2002) that even a small rate

of change drives the system back to the universality class

of the CP, producing the exact values of its characteristic
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exponents. Fig. 2b shows an example from the simula-

tions (unpublished so far).

In summary, the predictions of the CP at extremely

low densities are likely to apply for a broad range of

spatial population dynamic models. In the proximity of

extinction, various types of population dynamics can

converge into a single, robust process. A common feature

of these dynamics is that local extinction is competing

with local, finite-distance colonization, and the environ-

ment is either homogeneous, or it is heterogeneous but

can be characterized by random fluctuations in the

quality of sites.

Universality can be explained by the fact that near to

the threshold, the behavior of the system is dominated by

long-range correlations (see j and t; Sato and Iwasa

2000). Microscopic details become irrelevant: several

kinds of processes that share some basic properties show

the same macroscopic behaviour.

The importance of scaling laws (power laws) has been

emphasized in a number of biological systems (Enquist

et al. 1998, Ferriére and Cazelles 1999, Brown and West

2000, Allen et al. 2002, West et al. 2002). For example,

critical transitions have been detected in the collapse of

food webs and in the pattern of mass extinctions in

paleontological data (Solé et al. 1999, Brown and West

2000, Newman and Palmer 2003). Spatial population

dynamics adds another example: critical transitions are

likely to occur whenever local colonization and extinc-

tion processes compete in space.

The CP implies some important messages to nature

conservation:

[1] Classical (non-spatial) models of population

dynamics can easily underestimate the danger of extinc-

tion. The MF showed a steady, slow decline; the CP

predicted a sudden, threshold-like extinction.

[2] Several studies in conservation biology have

warned about the dangers of small population size

(genetic drift, demographic finite-size effects, etc;

Primack 1998). We wish to emphasize that not only

small size but also low density can be dangerous. The

phenomena described here are present even in infinite-

sized populations. Adverse effects of low density are not

unknown in the ecological literature. For example, a

member of a low-density group may have difficulties in

finding a mating partner, or may be weak in defending

itself against predators (Allee 1931, Stephens and

Sutherland 1999). However, the phenomenon studied

in our paper differs from an Allee effect in a funda-

mental feature: the per capita rate of birth does not

decrease with the decline of population density to zero

(c being constant). We show that even if a population is

not threatened by an Allee effect, it can get into a vortex

of extinction because of limited dispersal, and a con-

sequent failure in the regulation of population density.

[3] Finite-sized populations suffer from an additional

problem. As l is decreasing, the amplitude of fluctua-

tions in the population density becomes comparable to

the average. Thus, global extinction is likely to occur well

before reaching the theoretical lc. The CP model, which

assumes very large (virtually infinite) population size,

represents an optimistic estimation compared to the real

danger of extinction in a smaller population.

[4] A practical problem associated with the rapid

increase of fluctuation is that it becomes difficult to

estimate the population size near to extinction. So,

exactly the endangered species, for which we need

reliable estimations, may lack the sufficient amount of

data.

[5] The CP shows that fragmentation of a population

is not necessarily a consequence of fragmented habitat

structure, but an inevitable consequence of low spread-

ing rate (l) even in a homogeneous habitat. A direct

consequence of spontaneous fragmentation is that local

fluctuations cannot be damped by local compensatory

processes, and thus, the global fluctuation increases non-

linearly, according to a power law. The power law scaling

of some key parameters of the population may help to

predict the vicinity of the threshold well before the actual

danger of extinction would emerge.
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Appendix

Monte Carlo simulations of the CP

The behavior of the CP is usually studied by Monte Carlo simulations on finite but large lattices under periodic

boundary conditions. Cells of the latice are updated asynchronously. If a cell is occupied, it becomes empty (i.e. local

extinction occurs) with probability e. If a cell is empty, it becomes occupied (i.e. colonization occurs) with probability

c
k

4
; where k is the number of occupied cells out of the four nearest neighbors. The initial state of the lattice can be

chosen arbitrarily. It is costumary to study spreading from a single occupied cell (’seed’), or start from a maximally

high denisity population, in which every cell is occupied.
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