

Competitive niche: Way of population regulation

Géza Meszéna^{1*}, András Szilágyi¹, Kalle Parvinen² & Liz Pásztor¹

¹Eötvös University, Budapest, Hungary; ²University of Turku, Finland *http://evol.elte.hu/~geza

August 5, 2008

In	trod	luctio	on		
*	Nic	he th	neo	ry, wł	nat
is	it?				
	-	1			

 Background: robustness of coexistence

Theory

Examples

Conclusions

Niche theory, what is it?

Statements to specify:

- Species partition an abstract "niche space" of the ecological possibilities among themselves.
- They are able to coexist, i.e. to avoid competitive exclusion, exactly because they partition that space.

Introduction
Niche theory, what
is it?
 Disial consistential.

 Background: robustness of coexistence

Theory

Examples

Conclusions

Niche theory, what is it?

Statements to specify:

- Species partition an abstract "niche space" of the ecological possibilities among themselves.
- They are able to coexist, i.e. to avoid competitive exclusion, exactly because they partition that space.

Questions to answer:

- What is the niche space to partition?
- How to define the niche of a species within that space?
- What is the precise relation between niche partitioning and coexistence?

Introduction
Niche theory, what
is it?

 Background: robustness of coexistence

Theory

Examples

Conclusions

Niche theory, what is it?

Statements to specify:

- Species partition an abstract "niche space" of the ecological possibilities among themselves.
- They are able to coexist, i.e. to avoid competitive exclusion, exactly because they partition that space.

Ways of niche segregation to deal with:

- functional (e.g. resource partitioning)
- spatial/habitat (e.g. environmental gradient)
- temporal (e.g. successional)

Overview of the lecture

IntroductionNiche theory, what is it?

Background:
 robustness of
 coexistence

Theory

Examples

Conclusions

Introduction Niche theory, what is it? Background: robustness of coexistence

Theory

Regulating loop Results

Examples

Spatial segregation Functional & spatial segregation Temporal segregation

Conclusions

Robust coexistence

Robert M. May (1973) Stability and complexity in model ecosystems p. 158

FIGURE 6.4. The resource spectrum shapes (characterized by k_1/k_2) which allow a 2-species equilibrium configuration, as a function of degree of niche overlap, d/w. The permissible range of shape parameters lies between the two solid curves. The dashed line indicates the shape which equalizes the two equilibrium populations. See text for further details.

d/w

Robust coexistence

robustness of coexistence

Theory

Examples

Conclusions

Resource B

Tilman's model from: Chase & Leibold (2003) Ecological niches: linking classical and contemporary approaches

Theory

Regulating loop

Results

Examples

Conclusions

Theory

Theory

Regulating loop

Results

Examples

Conclusions

Robust coexistence requires segregation with respect to the regulating variables.

Results

$$r_i(\boldsymbol{E}, \boldsymbol{I}(n_1, n_2, \dots, n_L)) = 0$$

$$egin{array}{rcl} \displaystyle rac{dm{n}}{dm{E}} &=& -\left(rac{\partialm{r}}{\partialm{n}}
ight)^{-1}\cdotrac{\partialm{r}}{\partialm{E}} = \ &=& -rac{m{M}}{\det\left(rac{\partial r_i}{\partial n_j}
ight)}\cdotrac{\partialm{r}}{\partialm{E}} \end{array}$$

$$J = \det\left(\frac{\partial r_i}{\partial n_j}\right) = \det\left(\mathbf{S}_i \cdot \mathbf{C}_j\right)$$
$$|J| \le \mathcal{V}_{\mathbf{S}} \cdot \mathcal{V}_{\mathbf{C}}$$

$$egin{array}{rcl} \mathcal{V}_{m{S}} &=& |m{S}_1 \wedge m{S}_2 \wedge \cdots \wedge m{S}_L| \ \mathcal{V}_{m{C}} &=& |m{C}_1 \wedge m{C}_2 \wedge \cdots \wedge m{C}_L| \end{array}$$

Theory

Regulating loop

Results

Examples

Conclusions

Robust coexistence requires segregation with respect to the regulating variables.

Results

Therefore, the niche space should be identified with the set of regulating variables.

$$r_i(\boldsymbol{E}, \boldsymbol{I}(n_1, n_2, \dots, n_L)) = 0$$

$$egin{array}{rcl} rac{dm{n}}{dm{E}} &=& -\left(rac{\partialm{r}}{\partialm{n}}
ight)^{-1}\cdotrac{\partialm{r}}{\partialm{E}} = \ &=& -rac{m{M}}{\det\left(rac{\partial r_i}{\partial n_j}
ight)}\cdotrac{\partialm{r}}{\partialm{E}} \end{array}$$

$$J = \det\left(\frac{\partial r_i}{\partial n_j}\right) = \det\left(\mathbf{S}_i \cdot \mathbf{C}_j\right)$$
$$|J| \le \mathcal{V}_{\mathbf{S}} \cdot \mathcal{V}_{\mathbf{C}}$$

$$egin{array}{rcl} \mathcal{V}_{m{S}} &=& |m{S}_1 \wedge m{S}_2 \wedge \cdots \wedge m{S}_L| \ \mathcal{V}_{m{C}} &=& |m{C}_1 \wedge m{C}_2 \wedge \cdots \wedge m{C}_L| \end{array}$$

Theory

Regulating loop

Results

Examples

Conclusions

Robust coexistence requires segregation with respect to the regulating variables.

Results

Therefore, the niche space should be identified with the set of regulating variables.

Segregation is measured by differentiation of the impact and the sensitivitiy niches.

$$r_i(\boldsymbol{E}, \boldsymbol{I}(n_1, n_2, \dots, n_L)) = 0$$

$$egin{array}{rcl} \displaystyle rac{dm{n}}{dm{E}} &=& -\left(rac{\partialm{r}}{\partialm{n}}
ight)^{-1}\cdotrac{\partialm{r}}{\partialm{E}} = \ &=& -rac{m{M}}{\det\left(rac{\partial r_i}{\partial n_j}
ight)}\cdotrac{\partialm{r}}{\partialm{E}} \end{array}$$

$$J = \det\left(\frac{\partial r_i}{\partial n_j}\right) = \det\left(\mathbf{S}_i \cdot \mathbf{C}_j\right)$$
$$|J| \le \mathcal{V}_{\mathbf{S}} \cdot \mathcal{V}_{\mathbf{C}}$$

 $egin{array}{rcl} \mathcal{V}_{m{S}} &=& |m{S}_1 \wedge m{S}_2 \wedge \cdots \wedge m{S}_L| \ \mathcal{V}_{m{C}} &=& |m{C}_1 \wedge m{C}_2 \wedge \cdots \wedge m{C}_L| \end{array}$

Theory

Regulating loop

Results

Examples

Conclusions

Robust coexistence requires segregation with respect to the regulating variables.

Results

Therefore, the niche space should be identified with the set of regulating variables.

Segregation is measured by differentiation of the impact and the sensitivitiy niches.

Therefore, the niche of species *i* should be identified with the pair (C_i, S_i) .

$$r_i(\boldsymbol{E},\boldsymbol{I}(n_1,n_2,\ldots,n_L))=0$$

$$egin{array}{rcl} rac{dm{n}}{dm{E}} &=& -\left(rac{\partialm{r}}{\partialm{n}}
ight)^{-1}\cdotrac{\partialm{r}}{\partialm{E}} = \ &=& -rac{m{M}}{\det\left(rac{\partial r_i}{\partial n_j}
ight)}\cdotrac{\partialm{r}}{\partialm{E}} \end{array}$$

$$J = \det\left(\frac{\partial r_i}{\partial n_j}\right) = \det\left(\boldsymbol{S}_i \cdot \boldsymbol{C}_j\right)$$
$$|J| \le \mathcal{V}_{\boldsymbol{S}} \cdot \mathcal{V}_{\boldsymbol{C}}$$

 $egin{array}{rcl} \mathcal{V}_{m{S}} &=& |m{S}_1 \wedge m{S}_2 \wedge \cdots \wedge m{S}_L| \ \mathcal{V}_{m{C}} &=& |m{C}_1 \wedge m{C}_2 \wedge \cdots \wedge m{C}_L| \end{array}$

Theory

Examples

Spatial segregation

Functional & spatial segregation

Temporal segregation

Conclusions

Examples

Theory

Examples

Spatial segregation

Functional & spatial segregation

Temporal segregation

Conclusions

Spatial segregation

Szilágyi & Meszéna:

Two-patch model of spatial niche segregation. Evol. Ecol., in press

Theory

Examples

Spatial segregation

Functional & spatial segregation

Temporal segregation

Conclusions

Spatial segregation

Szilágyi & Meszéna:

Two-patch model of spatial niche segregation. Evol. Ecol., in press

Functional & spatial

4 elements — niche space — 2D continuum

RED-BLUE: temperature (spatial segregation)

YELLOW-GREEN: food size (functional segregation)

Do not confuse the niche space with the space of regulating variables!

Theory

Examples

 Spatial segregation

Functional & spatial segregation

 Temporal segregation

Conclusions

Temporal/successional

Structured metapopulation:

local population size has a dynamics also! Random local catastrophes with rate μ .

Strategy: *s* Trade-off:

Competitivity: $K(s) = (1 - s)^{1/\beta}$ Fecundity: $f_0(s) = 1 + \gamma s^{1/\beta}$

Competitivity K(s)

Density dependent fecundity:

$$f\left(s,\sum N\right) = f_0(s) \exp\left(-\frac{\sum N}{K(s)}\ln f_0(s)\right)$$

Parvinen & Meszéna:

Disturbance-generated niche-segregation in a structured metapopulation model. in prep.

Local succession

Regulating variable: local density – for all patch ages. Niche axis: patch age.

Theory

Examples

Conclusions

Conclusions

What is niche space?

The *set* of the regulating factors. (Discrete, or continuous, not only resources!)

Theory

Examples

Conclusions

Conclusions

What is niche space?

The set of the regulating factors. (Discrete, or continuous, not only resources!)

What specifies the niche of a species?

The way the population is regulated: the pair of impact and sensitivity niches (C_i, S_i) .

Theory

Examples

Conclusions

Conclusions

What is niche space?

The set of the regulating factors. (Discrete, or continuous, not only resources!)

What specifies the niche of a species?

The way the population is regulated: the pair of impact and sensitivity niches (C_i, S_i) .

What is the condition for coexistence?

Robust coexistence requires the segregation of the niches. Large niche-overlap makes the coexistence unlikely.

Theory

Examples

Conclusions

Conclusions

What is niche space?

The set of the regulating factors. (Discrete, or continuous, not only resources!)

What specifies the niche of a species? The way the population is regulated: the pair of impact and sensitivity niches (C_i, S_i) .

What is the condition for coexistence?

Robust coexistence requires the segregation of the niches. Large niche-overlap makes the coexistence unlikely.

Generality

Discrete and continuous, competitive and non-competitive interactions, equilibrium and non-equilibrium are handled together!

|--|

Theory

Examples

Conclusions

It is possible to have a consistent view of ecology, based on first principles.

ÖKOLÓGIA

Szerkesztette Pásztor Erzsébet és Oborny Beáta

Theory

- Examples
- Conclusions

Thanks to

- György Barabás
- Mats Gyllenberg
- Hans Metz
- Péter Szabó
- Dávid Völgyes