
es,

PHYSICAL REVIEW E 68, 041903 ~2003!
Speciation in multidimensional evolutionary space

A. Vukics,1,2 J. Asbóth,1,2 and G. Mesze´na2,3

1Department of Nonlinear and Quantum Optics, Institute for Solid State Physics and Optics, Hungarian Academy of Scienc
P.O. Box 49, H-1525 Budapest, Hungary

2Department of Biological Physics, Eo¨tvös University, Pa´zmány Péter sétány 1A, H-1117 Budapest, Hungary
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Adaptive dynamics in two-dimensional phenotype space is investigated by computer simulation. The model
assumes Lotka-Voltera-type competition and a stochastic mutation process. The carrying capacity has a single
maximum in the origin of the strategy space and the competition coefficient decreases with strategy difference.
Evolutionary branching, an asexual analog of adaptive speciation, is observed with suitable parameters. The
branching at the singular point, which is a fixed point of the directional evolution, may occur into two or three,
but not more, directions. Further branchings may occur after the initial separation. The probability of three-
branching is studied as a function of several parameters. We conclude that the two-way branching is the
predominant mode of adaptive speciation.
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I. INTRODUCTION: ENVIRONMENTAL FEEDBACK
AND ADAPTIVE SPECIATION

Adaptive speciation@1–13# is the most parsimonious con
cept on the origin of a new species. It is a literal impleme
tation of Darwin’s idea of descent via a series of small ad
tive modifications@14#. The tricky thing to understand is how
evolution uphill on the adaptive landscape can lead to a
versity of species, as opposed to being stopped at a~local!
maximum of the fitness.

An inherent feature of the Darwinian process provides
answer. Evolution modifies the environment and, in turn,
fitness function. Existence of this feedback is not an ex
assumption to introduce for explaining the process of spe
tion. Instead, it is a mathematical precondition of the ve
existence of more than a single species. Without the fe
back, parameter fine tuning would be necessary to avoid
best species to out-compete the other ones. The gen
theory of the combined dynamics of the evolving populat
and of the changing environment was presented earlier
one-dimensional~1D! evolutionary state space@15–17#, see
also Refs.@18–21#. It was shown that evolution toward in
creasing fitness can converge easily into a minimum, inst
of a maximum, of the fitness function@22–25#. Then, the
emerging disruptive selection splits the population into t
subpopulations and drives them to evolve away from e
other @16,17#. The theory of ‘‘adaptive speciation’’ hypoth
esizes that the very same disruptive selection results in
adaptive emergence of sexual isolation between the
types.

In some biological situations, emergence of new spec
clusters into a brief period and form a so-called ‘‘adapt
radiation’’ @26,27#. This phenomenon is very characteris
and in the middle of interest of speciation studies. Like s
ciation in general, adaptive radiation is also a matter of
tense debates. In the context of adaptive speciation, the
lowing question arises: Is it possible that a single even
evolutionary branching leads to more than two species?

The answer is a definiteno for 1D evolutionary state
1063-651X/2003/68~4!/041903~10!/$20.00 68 0419
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space. Only two branches can appear in a single branc
event in this case. However, this space is multidimensiona
any real case. So, we have to ask: Does the multidimens
ality affect the phenomenon of evolutionary branching in
essential way?

As we will see, a meaningfuldeterministicapproximation
is valid in a proper limit away from some fixed points, r
ferred to as ‘‘singular:’’ Mutations should be small and ra
for this limit. Around the singular point, however, the evol
tionary process remains inherentlystochastic. Since the in-
terfacing between the stochastic and deterministic regime
difficult to handle analytically, the branching process sho
be studied numerically. An analytic argument says that
mostK11 branches can appear in a single branching ev
at a singular point, whereK is the number of dimensions o
the evolutionary state space. This would allow high num
of species to appear in a single event of speciation when
state-space dimensionality is high. However, the analytic
gument does not ensure theexistenceof more-than-two-way
branchings, and tells nothing about the relative rates of
ferent types of branchings. These issues has remained t
checked by numerical experimentation, which is the m
goal of the present paper. We are especially interested in
behavior in the limit when the deterministic approximation
valid.

After summarizing the available analytical insights in Se
II, we introduce a specific model in Sec. III, and prese
results of numerical simulations for 2D state space in S
IV. We argue for the model-independent validity of our fin
ings and discuss their biological consequences in Sec. V

II. THEORETICAL BACKGROUND

A. Environmental feedback

To describe the evolution-environment feedback lo
properly, one should derive the fitness function and the
namics of evolution from the underlying population dynam
ics. This section summarizes some of the theoretical res
of Refs.@15–17,28,29# about this connection.
©2003 The American Physical Society03-1
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We collect all the environmental variables involved in t
feedback loop into the environmental interaction variablI
@30,31#. ~For instance, concentrations of different resourc
are possible elements ofI .! The population dynamics of a
specific species with sizen(t) at timet can be written in the
form

dn

dt
5r ~x,I !n, ~1!

where the growth rate, or fitness,r is the difference between
the rate of giving birth and the rate of death of an individu
The variablex, which will be referred to as ‘‘strategy,’’ rep
resents the heritable properties of the species. At a fi
value ofI , the functionx°r (x,I ) represents the fitness land
scape.

However, the assumption of constantI would lead to the
absurd consequence of unlimited exponential growth. In
real world, growing population deteriorates the environm
until the equilibrium environmentI x , characterized by
r (x,I x)50, is reached.~Only fixed-point attractors of the
population dynamics are considered in this paper.! For theL
number of coexisting strategiesx(1),x(2), . . . ,x(L), the L
number of equilibrium conditionsr (x( i ),I )50 should be sat-
isfied. Generally, solvability of this set of equations impli
the inequalityL<dim I . This bound is referred to as th
‘‘principle of competitive exclusion’’ in ecology@32–36#.
Note, however, that dimI is often infinite.

B. Assumptions about modeling evolution

To study evolution via small steps, one should specify
set of possible species, the strategy space, as a contin
Accordingly, we suppose that the strategyx is a
K-dimensional continuous variable. Value ofx is kept fixed
during the lifetime of an individual and inherited faithfully
except when mutation occurs. Only a finite number of diff
ent strategies are present at any given time. The list of
strategies changes with mutations and extinctions.

We assume time-scale separation between population
namics and evolution. Accordingly, whenever possible,
suppose that a new mutant arrives in the equilibrium en
ronment set by the strategies that are already present. A
mutant population is initially small, its appearance does
change the environmentI immediately. Consequently, th
initial growth rate of the mutant of strategyy is r mut
5r (y,I ), whereI is the equilibrium environment set by th
resident. That is, there is no environmental feedback ope
ing on the mutant population, so its initial growth would b
exponential in the deterministic approximation. Howev
because of the smallness of the emerging population,
chastic aspects are non-negligible.

Stochastic replication of independent individuals is ana
gous to the multiplication of neutrons in a nuclear cha
reaction and many other types of self-replication. Such p
cesses are described by the branching-process theory@37#.
~Note that these ‘‘branching processes’’ have nothing to
with phenomenon of ‘‘evolutionary branching,’’ which is
main issue of the present paper. The first one is conce
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with the branching of lines of individual descent while th
second one is concerned with the branching of evolution
lines.! According to this theory, the process is subcritical f
r mut,0, when the births cannot compensate for the dea
The clone of mutants dies out with probability 1 in this cas
In the supercritical situation, when births prevail over dea
(r mut.0), there is a positive chance for the long-term s
vival of the clone.~This probability is proportional tor mut for
small r mut by linearization.!

We suppose that the mutant clone has already assu
deterministic growth when it starts to modify the enviro
ment I . In other words, individuals remain independent a
the branching-process theory remains applicable during
stochastic phase. Moreover, we suppose that each evolu
ary step is small, so the mutant strategy is almost identica
the strategy of its ancestor. This assumption leads to the
ture of continuous and deterministic dynamics of the evo
tionary process.

C. Directional evolution

The mutant strategy, which does not die out, invades
resident populations. Mutant invasion may result in oust
of its ancestor. This is especially the case when the m
tional step-size is small and the ‘‘selection gradient,’’ or ‘‘lo
cal fitness gradient’’

D~x!5
]r ~y,I !

]y U
y5x

~2!

is different form zero@29#. Consecutive steps of such evolu
tionary replacements constitute a continuous evolution of
strategy.

The random process of substitutions can be approxima
by a deterministic dynamics of evolution, provided that t
mutations are rare and mutation steps are small. Dieckm
and Law@28# established that the evolutionary dynamics o
single strategyx is

dx

dt
5

1

2
mnCD~x!. ~3!

The matrixC is the variance-covariance matrix of the diffe
ence vector between the mutant’s and its ancestor’s stra
If the mutant strategy is distributed uniformly in the« neigh-
borhood of strategyx, the covariance matrix becomesC
5 1

2 «21. (1 is the unit matrix.! This leads to the simplifica-
tion

dx

dt
5gnD~x!, ~4!

whereg5m«2/4 contains the constant factors.

D. Singular strategies

A strategyx̂ is referred to as a singular one, ifD( x̂)50,
that is, if directional evolution ceases atx̂. This fixed point is
stable under dynamics~4! if and only if the Jacobian matrix
3-2
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J5
]D~x!

]x U
x5 x̂

5
]2r ~y,I x̂!

]y2 U
y5 x̂

1
]r ~ x̂,I x!

]I x

]I x

]x
U

x5 x̂

~5!

is negative definite@28,38#. A singular strategy with this kind
of stability is referred to as a convergence stable one.

Note that a convergent stable singular strategy is not n
essarily a local maximum of the fitness function. Negat
definitiveness of the first term of Eq.~5! would correspond to
a fitness maximum. The second term represents the ch
of the fitness gradient via the evolution-induced environm
tal change. It may result in a negative definite Jacobian e
if the first term is not negative definite; that is, it is possib
that the directional evolution converges to a singular st
egy, which is not a local maximum of the fitness functi
@22–25#. Local maxima of the fitness are referred to as~lo-
cally! evolutionary stable strategy, or ESS@39#, because a
mutant strategy that is similar to the resident is unable
invade such a resident.~See also Ref.@40# for the intricacies
of the ESS concept in relation to evolutionary game theo!

E. Branching evolution

What happens if the evolutionary process converges
singular point, which is convergent stable but not evolutio
ary stable?~In other words, what if evolution converges to
minimum of the fitness function?! It is not protected agains
mutations but cannot evolve away either. For on
dimensional trait space it was shown that evolution
branching is a necessary outcome of this situation@16,17#.
Coexistence of two strategies, located on the opposite s
of the singular point, is always possible in the vicinity of th
type of singularity. As soon as the coexistence is establis
the selection forces acting on the two strategies on the op
site sides of the fitness minimum push them away from e
other. Apart from the singular point, the canonical equat
~3! governs the evolution of each branch again.~The inter-
action between the branches have to be taken into acc
via the feedback variableI .! New singular points may be
reached and further branchings may occur@17#.

No complete analytic theory of evolutionary branching
known for more than one dimension. The main purpose
the paper is to investigate this situation.

F. Local coexistence

There is a bound on the branches appearing in a si
branching event@15#. At mostK11 number of strategies ca
coexist in aK-dimensional strategy space in the vicinity
the singular strategyx̂.

To see this, we expand the fitness function into Tay
series aroundx̂. As the slope of the fitness is zero atx̂, one
should consider the expansion up to second order to see
nonvanishing terms:

r ~x,I !5a~ I !1 (
k51

K

bk~ I !~xk2 x̂k!1 (
k,l 51

K

gkl~ I !~xk2 x̂k!

3~xl2 x̂l !1~higher-order terms!. ~6!
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The first two terms of Eq.~6! are zero forI5I x̂ . For the
coexistence of strategiesx(1),x(2), . . . ,x(L), all near tox̂, the
equilibrium conditions

r ~x( i ),I !5a~ I !1 (
k51

K

bk~ I !~xk
( i )2 x̂k!

1 (
k,l 51

K

gkl~ I x̂!~xk
( i )2 x̂k!~xl

( i )2 x̂l !

1~higher-order terms!50 ~7!

should hold for eachi 51, . . . ,L. In this context,I denotes
the equilibrium environment set by the equilibrium of stra
egiesx(1),x(2), . . . ,x(L). In the last term of Eq.~7!, we re-
placedI by I x̂ because the error caused by the replacemen
in the third order. As the adjustable variableI enters the
equation through the K11 number of parameter
a(I ),bk(I ), k51, . . . ,K, the equilibrium conditions canno
be satisfied generically forL.K11, as it was stated. This
bound is related to the principle of competitive exclusion,
the number of locally achievable dimensions ofI at I x̂ is K
11 @15#. ~One can change the environmental state fromI x̂
by changing either the strategy or the population size, rep
senting togetherK11 local directions.!

It is clear from the bound that at mostK11 branches can
appear from one single branching event.

III. MODEL

In line with the general framework presented in the p
ceding section, we introduce a specific model for the sim
lational study. Evolution of aK52 dimensional ‘‘strategy’’
parameter, denoted generally by the vector variablesx, y,
etc., is investigated. The strategy is inherited either faithfu
or with a small probability of mutation.

The rate of reproductionb(x) of strategyx is specified as

b~x!512xTAx, ~8!

where the matrixA is

A5S ~12 f !21 0

0 12 f D , ~9!

with the asymmetry parameter 0< f ,1. Accordingly, the
central strategyx50 maximizes the reproduction rate. Stra
egies withxTAx.1 are not viable.

Death is caused by competition with other individua
Any individual of strategyx contributes to the death rate o
an individual of strategyy by a(x,y). This ‘‘competition
function’’ is specified as

a~x,y!5expS 2
~x2y!2

2s2 D , ~10!

wheres is the ‘‘competition width.’’ The death rate of an
individual of strategyx is determined by the total compet
tion of individual experiences:
3-3
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I ~x!5(
j 51

L

n( j )a~x( j ),x!. ~11!

In this model, the functionI (x) plays the role of the envi-
ronmental interaction variableI ; that is, dimI5` and there
is no trivial bound on the number of coexisting strategies

Suppose that the strategiesx( i ), i 51,2, . . . ,L are present
with population sizesn( i ). If all the n( i )’s are large enough
and there are no mutations, the population dynamics ca
described by the Lotka-Voltera competition equations

dn( i )

dt
5@b~x( i )!2I ~x( i )!#n( i ). ~12!

The growth rate

r ~y,I !5b~y!2I ~y! ~13!

is considered to be the ‘‘fitness’’ of the strategyy in the
background set by the strategiesx( j ) and population sizes
n( j ), j 51,2, . . . ,L.

The mutation process has to be implemented by hand.
suppose that strategyx( i ) mutates with ratemb(x( i ))n( i ). ~It
corresponds to probabilitym of mutation in any birth
event—m is often calledmutation rate! The new strategy
x(mut) is chosen randomly with uniform distribution in th
two-dimensional« neighborhood ofx( i ). While the size of
the mutant clone is small compared to the ‘‘resident’’ den
tiesn( i ), i 51,2, . . . ,L, the death rate of a mutant individua
is dominated by the contributions from individuals of th
resident strategies. Then, the growth rate of the mutant
be calculated from Eq.~13!. However, while the mutan
population is small, the deterministic population dynam
does not apply. According to the branching process the
long-term survival probability of the mutant clone, descen
ing from a single individual, is

P5H 0 if r<0

r /b if r .0
~14!

@37# ~p. 109!, @41,42#. The new mutant is considered to b
established, and included into the list of the strateg
present, with probability~14! calculated forr 5r (x(mut)).
The newly established strategy begins its life from a l
initial population sizen(mut).

Strategies decreasing below a given population sizenext
are removed from the list of strategies.

Accordingly, the simulation of the model consists of r
peating 3 consecutive steps:

~1! integrating the ODE of the population dynamics for
period t; ~2! removal of the strategies with low populatio
size; ~3! possible addition of new mutant~s!.

This combination of deterministic population dynami
with a stochastic mutation process was introduced by M
et al. @15# and Geritzet al. @17# and, since then, applied fo
several models@43–48#.

The mutation rate was chosen to bem5231027. The
update time wast5100 time unit ~TU!, small enough to
keep the expected number of mutations duringt below 1.
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The density of the arising mutant and the extinction thre
old were equal and small enough so that the arising mu
does not disturb the resident:n(mut)5next51026. The reso-
lution of the strategy space was rather fine: 431026 unit.

IV. RESULTS

A. The pattern of phase transitions to evolutionary branching

Note first that if the strategyx alone is present, then th
only singular strategy isx50. The equilibrium density~as
determined by the conditionr 50) for this strategy when
alone, isn51. Then, for f 50, the fitness function in this
equilibrium is

r ~y,I !512y22expS 2
y2

2s2D . ~15!

At y50 it has a local maximum fors.sc , and a local
minimum for s,sc , wheresc51/A250.707. This thresh-
old is independent of the number of dimensions.

Figures 1–4 demonstrate the behavior of the model w
competition widthss51.0, 0.7, 0.5, 0.2, respectively, in 2D
for the rotationally symmetric (f 50) case. In the bottom lef
part of each figure the trajectory in the strategy space
shown, while in the top-left and bottom-right parts of th
figures the time development of each component of the s
egies is shown.~We will use the same representations in t
rest of the paper.! The simulation was initiated with one spe
cies of strategy ofx(0)(t50)5(0.1,0.1), the mutational step
size was«50.005.

FIG. 1. Evolution with competition widths51.0. The system
starts from (0.1,0.1) and evolves into the singular point~0,0!. There
is no branching becauses.sc . The carrying capacity is symmet
ric: f 50; the mutational step-size is«50.005. In the bottom-left
part of the figure the strategy-space trajectory is shown, while in
top-left and bottom-right parts the development of the strategy c
ponentsx0 and x1 are depicted, respectively. Time is counted
million time units.
3-4
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In all cases, evolution of a single species convergesx
50. For s.sc this strategy is an ESS, so evolution ceas
here. On the other hand,s,sc results in evolutionary
branching. This change of the behavior of the singular po
at s5sc is analogous to a phase transition with the com
tition width s as control parameter. The rate of the branch
expansion can be regarded as the order parameter o
phase transition. Random establishment of the branching
rection represents a spontaneous breaking of the rotati
symmetry of the model.

The global behavior is in good agreement with the th

FIG. 2. Same as Fig. 1, but the competition widths50.7,
slightly less thansc . There is already a branching, but it go
rather slowly: it occurs at about 20 million TU.

FIG. 3. Same as Fig. 1, buts50.5. The branching occurs mor
easily than in Fig. 2, at about 2.5 million TU.
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retical predictions. After the first branching the evolution
the emerging species are directional again until they arriv
the vicinity of their respective singular points. These ne
singularities are determined by the condition that the evo
tionary attraction towards the maximum of carrying capac
should compensate for the repulsion between the species
to competition. The new singularities may or may not be n
branching points depending on the value of the control
rameters. So, further decrease of the control parameter
sults in consecutive branching transitions. For extrem
smalls values, a whole series of branchings occurs~see Fig.
4!. However, even in the case of smalls, when the propen-
sity for branching is very high, we have never found a
branching into more than three directions, in accordance w
the analytic prediction.

Nevertheless, a remarkable departure from the anal
theory is also observable for small competition widths~s
50.2,0.5!. The first branching may occurbeforereaching the
singular strategyx50. This is because the analytic treatme
supposes the validity of the linear approximation for the
ness function on the scale of mutational step-size«. This
assumption breaks down at the singular point, where the
ear term diminishes. For very smalls, the quadratic term
arising from the competition function~10! is large enough to
dominate the fitness function earlier than the singular st
egy is approached.

B. The branching pattern

The parameter values50.5 was chosen for more detaile
investigations of the branching pattern. In this case the fi
branching goes already rather easily but the number of c
secutive branchings is still limited. Consequently, the syst
evolves deterministically for a sufficiently long time afte
each branching event. In this section, we concentrate on

FIG. 4. Same as Fig. 1, but with very small competition wid
(s50.2). A series of consecutive branchings occurs.
3-5
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VUKICS, ASBÓTH, AND MESZÉNA PHYSICAL REVIEW E 68, 041903 ~2003!
first branching atx50. Accordingly, the simulations are ini
tiated by a single species with this strategy.

Some examples are shown in Fig. 5 with branchings i
two directions. For the sake of illustration in Fig. 6 we sho
examples where the branching at the center occurs into t
directions, but during further evolution one of the branch
dies out. These arenot regarded as three-branchings wh
studying statistics. In Fig. 7 ‘‘real’’ three-branchings can
seen. In these figures the mutational step-size is«50.0025.
Some other examples with mutational step-size«50.005 for
two-branchings are presented in Fig. 8, for three-branch
in Fig. 9. We conclude that both the two- and the thre
branchings are really existing phenomena.

The possibility of consecutive branchings strongly d
pends on the outcome of the first branching, whether it h
pened into two or three directions. After a two-branchi
event in the center, both branches separate into two by a
branching event on a circle of diameter 0.7. Then, the f
branches evolve into another branching point where all
four branches separate into two, again. The eight-branc
system evolves until it reaches a roughly symmetric confi
ration when all the eight branches are situated on a circl
diameter 0.875. This is the final steady stage of the ev
tionary process~Fig. 10!. In contrast, the three branche
emerging from a three-branching event branch only o
more. These branching points are situated on a circle of
ameter 0.85. The six branches emerging here evolve
approximately the same circle as in the two-branching ca
and cease to evolve at the symmetric configuration~Fig. 11!.

FIG. 5. Examples for two-branchings withs50.5 in the sym-
metric situation (f 50), with «50.0025, which is a rather sma
value. The system starts from the center.

FIG. 6. Examples with the same parameters as in Fig. 5, for
extinction of one of the three branches before long after the bra
ing in the center. Development like this isnot considered as a three
branching when investigating statistics.
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In the upper-right part of Figs. 10 and 11 we have d
picted the time evolution of the number of coexisting phen
types L and the density of the whole populationn
5( j 51

L n( j ). As we see, the density of the whole populati
increases after every branching. The number of the coex
ing phenotypesL becomes rather stochastic, but tends to
crease near the branching points. It decreases again whe
system leaves a branching point. The reason for this beha
is the flattening fitness function around the singularities.
these regions, the~stochastic! process of mutations domi
nates over selection caused by the slope of the fitness l
scape.

Finally, Fig. 12 with«50.01 andf 50.2 demonstrates the
consequences of strong breaking of rotational symmetry
this case the final stationary state consists of branches
ated on an ellipse. The asymmetry makes the thr
branchings rather improbable. For example, with the para
eter set of these examples, we have found only 11 th
branchings on 3000.

C. Statistics of the branching types

In this section we measure the probability of thre
branchings at several parameter combinations, but alw
with s50.5. We are most interested to see whether t

FIG. 7. Real three-branchings with the same parameters a
Fig. 5.

FIG. 8. Examples for two-branchings with the same parame
as in Fig. 5, but with larger mutational step-size«50.005.

e
h-
3-6
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SPECIATION IN MULTIDIMENSIONAL EVOLUTIONARY SPACE PHYSICAL REVIEW E68, 041903 ~2003!
probability goes to zero, or remains finite, in the limit«
→0.

At the end of each simulation, a clustering algorithm w
used to determine whether a two- or a three-branching
occurred. The two strategies nearest to each other were f
in each step of the algorithm. Doing so, the minimal distan

FIG. 9. Examples for three branchings with the same parame
as in Fig. 8.

FIG. 10. The same parameters as in Fig. 8, but the system
been let evolve for a long time to reach a steady state. The st
state consists of eight branches situated on a circle in the stra
space. The trajectory and time developments are also shown, a
the upper-right part we have depicted the time development of
number of coexisting phenotypesL as well as the density of the
whole populationn5( j 51

L n( j ). The time scale of these small fig
ures is the same as that of the bottom-right figure.
04190
s
d
ed
e

between the phenotypes increased step by step slowly w
both phenotypes to be fused were in the same branch. H
ever, it had a big jump when, finally, strategies from tw
different branches were attempted to be fused. The algori
was terminated when the minimal distance reached the v
0.2. Then, the still different phenotypes were counted and
number was regarded indicative of the number of branch
As we were interested in the number of branches reach

rs

as
dy
gy
in
e

FIG. 11. Similar to Fig. 10, but the first branching occurred in
three directions. In this case the steady state consists of six bran
situated on the same circle in the strategy space.

FIG. 12. Two- and three-branchings in a highly asymmetric s
ation with mutational step-sizes«50.01 and asymmetry paramete
f 50.2. The final steady situations are shown with the branc
situated on an ellipse.
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VUKICS, ASBÓTH, AND MESZÉNA PHYSICAL REVIEW E 68, 041903 ~2003!
the deterministic stage of diverging evolution, the cluster
had to be performed far enough from the branching poi
Accordingly, clustering was carried out when the separat
of the branches had reached the distance 0.48.~Obviously,
this distance should be larger than the critical minimal d
tance 0.2 of the clustering algorithm.!

In Fig. 13 we have depicted the dependence of the pr
ability of three-branchings as a function of the mutation
step-size« for the rotationally symmetric (f 50) case. Each
point in the figure represents 2000–5000 simulations
achieve the precision indicated by the error bars.~See Table
I for the time needed to reach the separation 0.48.!

In Fig. 13 we see that the smaller the mutational step-s
is, the smaller the probability of three branchings we ha
For a three-branching, it is necessary that the three mut
take a rather symmetric position around the center to be
to live together. When the mutational step-size is large,
mutants are more ‘‘mobile’’ in the strategy space: there
more possibility to correct the eventual defects of the star
position. Numerical studies become especially difficult
very small values of« for two reasons. First, because sim
lation of evolution becomes slow and, second, because
small probabilities are to be measured in this case. Still,
trapolation for «→0 seems to indicate vanishing ratio
three-branchings.

FIG. 13. Probability of three-branchings as a function of«. The
carrying capacity is rotationally symmetric (f 50). The single point
marked by star indicates the situation where the starting point
x(0)(t50)5(0.1,0.1), instead of the singular one.

TABLE I. Time that the branches need to reach the separa
0.48 as a function of the step-size«

« (3106) TU

0.0015 40
0.002 20
0.0025 15
0.003 9
0.0035 7
0.004 5.5
0.005 3.5
0.0075 2
0.01 1
04190
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The three-branching probability as a function of the asy
metry parameterf is presented in Fig. 14 for two differen
mutational step-sizes,«50.01 and «50.005. Increasing
asymmetry makes the three-branchings less probable. Th
easily understood if we consider that increasing the asym
try signifies out a specific direction for branching.

Both Figs. 13 and 14 contain one single data point mar
by a star, representing a simulation in which the start
point wasx(0)(t50)5(0.1,0.1), instead of the singular on
Starting the population out of the singular point makes
tree-branchings less probable since it also corresponds
breaking of the rotational symmetry.

V. CONCLUSIONS

In line with the theoretical expectations@28#, our simula-
tions demonstrated that a series of small and rare ran
mutation steps results in a deterministic process of cont
ous evolution, governed by the slope of the fitness functi
whenever this slope is nonzero. On the other hand, the
havior remains of stochastic nature in the vicinity of singu
strategies, where the fitness gradient vanishes. Here, th
lection is weak, so the number of concurrent strategies
mains high even at low mutation rate. The region of essen
randomness can be shrunk arbitrarily by choosing the m
tional step-size« small enough. However, the determinist
evolution will drive the system into the stochastic region
any case, provided that the singular point in question is c
vergence stable. If evolutionary branching occurs at a n
ESS singular point, both the number and the directions of
emerging evolutionary branches are essentially random
they are determined by the interface between the stocha
and the deterministic phase. We observed branchings
two and three directions in 2D strategy space in line with
theoretical bound on the number of emerging branches.

The results of our simulations point to vanishing thre
branching probability in the limit«→0. Care is needed to
compare this finding with the deterministic limit away fro
the singularity, which is also related to«→0. Decreasing«

as

n

FIG. 14. Probability of three-branchings as a function of t
asymmetry factorf at two different values of the mutational step
size«. The probability vanishes with increasingf. The single point
marked by star indicates the situation where the starting point
x(0)(t50)5(0.1,0.1), instead of the singular one.
3-8
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SPECIATION IN MULTIDIMENSIONAL EVOLUTIONARY SPACE PHYSICAL REVIEW E68, 041903 ~2003!
makes evolution slower, so it rescales time. This resca
goes as«21 in deterministic phase, when the fitness diffe
ence is dominated by the linear term, and as«22 in the
vicinity of the singularity under the dominance of the qu
dratic term. Consequently, time scales of the directional e
lution and of the branching separate in the limit«→0. We
lose branching on the fast scale and directional evolu
becomes instantaneous on the slow one.~See Ref.@21# for
the connection between this time-scaling issue and the
cept of punctuated equilibrium@49#.! Our simulations corre-
sponded to an intermediate«, for which the directional evo-
lution was already deterministic enough, but the time-sc
separation was not extreme and the three-way branching
nomenon was still present. It is a question for further co
sideration, what possible choice of« corresponds the best t
the biological reality. Considering sexual populations,
which recombination maintains a high level of genetic va
ance even in the limit of small and rare mutations, may e
decouple these two consequences of small evolution
steps.

Breaking of rotational symmetry of the model also d
creases the probability of three-branchings. The rela
scales of the two directions were fixed when the mutat
covariance matrixC was chosen to be rotationally symme
ric. Without the freedom of further rescaling, in reality w
have little reason to expect rotationally symmetricA matrix
corresponding tof 50. Breaking the rotational symmetry o
the competition function~10! would have a similar conse
quence. This result, again, points to the probable predo
nance of the two-way branchings.

Furthermore, we have found that the initial conditio
x(0)(t50)Þ0 results in a smaller probability of three-wa
branching as well, than the initial conditionx(0)(t50)50
does. Naively, one could assume that the deterministic c
vergence to the singular point diminishes the effect of
initial condition on the outcome of branching. According
our data, this is certainly not the case. Once again, the
mate relation between the deterministic and the stocha
phase of the process provides the explanation. The con
gence ceases as soon as the system enters the stochas
gion, so the stochastic phase is initiated by a rotation
asymmetricdistribution. These two types of initial condition
represent different biological scenarios, both of them are
alistic. The initial strategyx(0)(t50)Þ0 corresponds to a
speciation process in an essentially constant environm
One species evolves to the branching singularity and s
there. On the other hand, the initial conditionx(0)(t50)50
is relevant when speciation is initiated by an environmen
change. Suppose that a parameter change bifurcates a fo
ESS point into a branching one. If a species has evol
earlier into this singularity, then it starts the process
branching from an already established rotationally symm
ric distribution after the bifurcation.

All these results together suggest that the three-w
branching ispossible, still, the dominant mode of speciatio
is probably the two-way branching. This is certainly in lin
with the usual picture about the evolutionary process. Ho
ever, no clear empirical way is available to decide whet
each new species emerging during adaptive radiation co
04190
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from a separate event of branching. While the number of t
dimensions is high in any real evolutionary process, our
sults support the possibility that only one combination
them is relevant in any specific event.

The Lotka-Voltera competition model we analyzed is t
most common model of coexistence of different species
well as of different genotypes within the same spec
@36,50–54# and one of the simplest examples for evolutio
ary branching. However, as far as relatively small mutat
steps are considered, our results are independent of the
cific model we studied. This is clear from the fact that, f
small«, the process of mutant invasion is determined by
first nonvanishing term of the Taylor expansion of the fitne
function. Directional evolution is determined by the slop
while the stochastic phase in the vicinity of the singularity
governed by the second-order terms. This is exactly the i
behind the classification of the singular strategies accord
to their second-order behavior, which was suggested
implemented in Ref.@16# for 1D strategy space. Note that th
mutation ratem was not low enough to strictly obey th
conditions of the analytic theory. The next mutant arriv
well before the previous one has equilibrated. However,
cording to the simulation results, this does not affect
behavior too much. In line with Eigen’s concept of quasisp
cies@55–57#, the directional part of the evolutionary proce
can be described as a moving cloud of mutants.

The only essential assumption we rely on is the concep
adaptive speciation driven by an ever-changing fitness la
scape. For a complete theory of speciation, one has to
sider a sexual population and implement a mechanism
emergence of reproductive isolation between the spe
@3,5,7,10,12#. Evolutionary studies often employ a fixed fi
ness function. This approach is very useful in studying e
lutionary optimality problems, as well as mutation-selecti
balance@58–61#. However, no meaningful biological diver
sity can emerge in such model, as a consequence of ad
tion, because there is no generic reason for the differ
peaks of the adaptive landscape to have of equal height

In contrast with adaptive speciation, the classical ‘‘all
patric’’ theory of speciation@62,63# supposes that separatio
between species emerges as a genetic ‘‘by product’’@64# of
evolution of the different subpopulations at different loc
tions. There is no explicit need for changing fitness lan
scape in this picture. Implicitly, however, the assumption
feedback is needed to understand why the new and the
species can live together, without out-competing each ot
when they finally meet. New empirical evidence support t
spatial separation is not a prerequisite for speciation@65,66#.
On the other hand, the idea of adaptive speciation migh
applicable for speciation modes involving spatial segrega
@8,9,44#, so it has a chance of becoming the general und
lying concept of speciation.
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