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We reinvestigate the validity of the limiting similarity principle via numerical
simulations of the Lotka�/Volterra model. A Gaussian competition kernel is
employed to describe decreasing competition with increasing difference in a one-
dimensional phenotype variable. The simulations are initiated by a large number of
species, evenly distributed along the phenotype axis. Exceptionally, the Gaussian
carrying capacity supports coexistence of all species, initially present. In case of any
other, distinctly different, carrying capacity functions, competition resulted in
extinction of all, but a few species. A comprehensive study of classes of fractal-like
carrying capacity functions with different fractal exponents was carried out. The
average phenotype differences between surviving species were found to be roughly
equal to the competition width. We conclude that, despite the existence of exceptional
cases, the classical picture of limiting similarity and niche segregation is a good rule of
thumb for practical purposes.
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Limiting similarity is a central, but controversial tenet of

community ecology. The seminal paper of MacArthur

and Levins (1967) was among the most influential

theoretical papers in ecology. It stated that phenotype

difference on the scale of the competition width is

required between coexisting species. Since then, the

assertion and the related figure became an indispensable

part of any ecology textbook (Begon et al. 1996, Case

2000, Krebs 2001).

While the empirical relevance of limiting similarity

was clearly demonstrated in several studies (Schluter

2000a, 2000b), its wider context, ‘‘competition theory’’,

has gradually fallen out of favor since its inception in the

sixties. It has become the prevailing view that impor-

tance of competition, and henceforth of limiting simi-

larity, was originally overestimated; other types of

interaction, like predation and disturbance, has a non-

negligible role in shaping communities (Begon et al.

1996). On the other hand, even more recently, other

researchers stress that the effect of predation is very

analogous to resource limitation; an attempt to revival

of niche theory as a ‘‘central organizing aspect of

ecology’’ was made on this basis (Leibold 1995).

Decline of competition theory overshadows the fact

that the real prediction of it has never been made

sufficiently clear. Competitive exclusion (Gause 1934,

Hardin 1960) is often interpreted in the narrow, but

mathematically clear, sense as a statement that the

number of coexisting species cannot be larger than the

number of resources, or ‘‘limiting factors’’ (Levin 1970,

Armstrong and McGehee 1980). Partitioning of a

resource continuum cannot be discussed this way, as

the continuum represents an infinite number of different

resources. Then, we either have a limiting similarity type

statement, or competitive exclusion predicts nothing

(Rosenzweig 1995).

MacArthur and Levins (1967) used the Lotka�/

Volterra competition model for demonstrating limiting

similarity in resource partitioning. However, the more

detailed analysis of the model by May and MacArthur

(1972) established no clear lower bound of similarity.

While May (1973) rescued the principle by referring to
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environmental fluctuation as a necessary ingredient of

the limiting similarity argument, the very same result

signaled the end of the road for limiting similarity

according to Rosenzweig (1995): ‘‘. . . the result (limiting

similarity) was quicksand that trapped the energies of

community ecologists for more than ten years and nearly

killed the subdiscipline’’.

Surprisingly, the most powerful mathematical coun-

terexample for limiting similarity is not widely recog-

nized in the ecological literature. Roughgarden (1979)

demonstrated, that even a continuum of species is able to

coexist in the Lotka�/Volterra model. While this effort

was intended to describe polymorphism within a species,

it can be interpreted also in a community ecology

context, as recognized by Maynard Smith and Szathm-

áry (1995).

Investigations going beyond the Lotka�/Volterra

model leaded to no firm conclusion, either (Abrams

1983, 1988). On the one hand, it seems to be clear that

some kind of limit of similarity must exist in any model.

On the other hand, no general result of this type has

emerged.

More recently, following the lead by Sasaki and Ellner

(1995), Gyllenberg and Meszéna (2005) showed that any

model, which allows continuous coexistence, is necessa-

rily structurally unstable, i.e. an arbitrarily small mod-

ification of the model might be able to destroy the

continuous coexistence. The continuous coexistence in

Roughgarden’s model will not survive a small perturba-

tion of the carrying capacity curve. Meszéna et al. (in

press) claims that similarity of coexisting species de-

creases the tolerance of the assemblage towards the

external environmental parameters. That is, similarity

decreases the chance of coexistence. While these quali-

tative analytical results are very general, they do not

predict any specific lower bound of similarity.

After many pros and cons, the single most important

question, i.e. whether limiting similarity has any prac-

tical relevance, has remained unsolved. Here we intend

to check the expectation that coexisting species should

differ roughly according to their competition width.

More specifically, assuming Gaussian competition func-

tions with a standard deviation s, can we generally

expect, as a rule of thumb, 2s distances between

coexisting species? We resort to a comparative study to

answer this question. We investigate the cases which

support limiting similarity, and the cases which defy it, in

the same context. As both the existence and the non-

existence of limiting similarity were originally demon-

strated in the Lotka�/Volterra model, we use this frame-

work also. We repeat the same numerical experiment

with different choices for the carrying capacity function.

The Gaussian one, corresponding to Roughgarden’s

counter-example with the continuous coexistence, will

be considered as the reference case.

Model definition

We start from the familiar Lotka�/Volterra competi-

tion model for several species, which we write in the

form:

dni

dt
�aini

�
Ki�

XL

j�1

aijnj

�
(1)

where L stands for the number of species, i �/{1,2,. . .,L}

and ni denotes the density of the first one. The elements

of the competition matrix are denoted by aij; aii�/1 is

assumed for all i. Ki is the carrying capacity for species i.

As the constant ai is unimportant for our purpose, ai�/1

will be chosen for each species.

Each species is characterized by a phenotype variable

xi. Then, Ki and aij are determined by the phenotype and

the difference between phenotypes, respectively. Eq. 1

takes the form:

dni

dt
�ni

�
K(xi)�

XL

j�1

a(xi; xj)nj

�
(2)

We suppose decreasing competition with increasing

phenotype difference, according to the usual Gaussian

form:

a(x; y)�exp
�(x � y)2

2s2
(3)

The twice standard deviation 2s of this Gaussian will be

referred to as competition width. The carrying capacity

function K(xi) will be specified in each example sepa-

rately.

When the number of species is large and the difference

between neighboring phenotypes is small, we use the

continuous approximation:

dn(x)

dt
�n(x)

�
K(x)�g a(x; y)n(y)dy

�
(4)

where n(x) stands for the density of species with

phenotype x. Then the equilibrium condition reads as:

K(xi)�
XL

j�1

a(xi; xj)nj (5)

or:

K(x)�g a(x; y)n(y)dy (6)

In equilibrium, these equations should hold for all

species present in non-zero density.

For each choice for the carrying capacity function

K(x), we integrated Eq. 2 numerically with time steps of

Dt�/0.1. Simulations were initiated with 1001 species,

evenly distributed within the phenotype interval [�/1,1]

with equal densities of 0.01. The outcome of competition

was evaluated at t�/10 000. At this time point the growth
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rates were wery close to zero. The number of coexisting

species was assessed by counting species that were

present and exhibited nonnegative growth at t�/10 000.

This criteria was applied to exclude populations which

were bound to extinction, but eventually existed at that

time.

Results

Roughgarden’s example for continuous coexistence

Roughgarden’s (1979) example employs the Gaussian

carrying capacity function:

K(x)�exp
�x2

2v2
(7)

where v denotes the half-width of this curve. Then the

Gaussian species distribution:

n(x)�
v=sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p(v2 � s2)
p exp

�x2

2(v2 � s2)
(8)

is an equilibrium solution of Eq. 4, provided that v�/s.

In this case, infinitely many arbitrarily similar species

may coexist along the phenotype axis.

We reproduced this analytical result numerically

(Fig. 1). All of the populations, that were present

initially, survived. In agreement with Eq. 8, the equili-

brium distribution of the population densities followed a

Gaussian curve. Increased competition width s led to

a narrower distribution of densities. Obviously, when

vB/s, i.e. when the carrying capacity is narrower than

the competition width, only the species x�/0 survives

(not shown).

Other simple carrying capacity functions: no contin-

uous coexistence

The rectangular function:

K(x)�
c; if x � (�b; b)
0; if xQ(�b; b)

�
(9)

which is zero outside an interval, is the next simple

choice for the carrying capacity curve. In contrast to

Roughgarden’s case, most of the populations go extinct.

Only a very limited number of species coexist at

equilibrium (Fig. 2).

The average phenotype difference between adjacent

survivors can be calculated by dividing the total

phenotype interval with the number of coexisting species.

As plotted in Fig. 3, this difference increased with s
linearly with great accuracy. The steepness of the linear

regression line was found to be 1.82. That is, in

agreement with the classical expectation, the coexisting

species were spaced roughly by the competition width

2s.

It is easy to interpret this result in qualitative terms.

The two species, which are located at the two ends of the

livable range, gain advantage from the lack of competi-

tors on one of their sides. Then, competition by these

high-density species causes extinction within their range

of competition. Two empty ranges emerge which, in

turn, give advantage to two species, located at the inner

ends of the empty ranges. And so on, a discrete

distribution emerges.

The perturbation, that renders the coexistence of

infinitely many strategies impossible does not have to

be so abrupt. We get similar results if K(x) is a sum of

two Gaussian functions as:

K(x)�exp
�x2

2v2
1

�a exp
�(x � m)2

2v2
2

(10)

with v1�/s�/v2. The first Gaussian, when alone,

would maintain a continuous coexistence. In contrast,

the second one supports a single phenotype, namely

x�/m.

Figure 4 demonstrates the emerging species distribu-

tion. The second term of Eq. 10 gives an advantage to

species x�/m. The high density of this species causes

extinction of each species within its range of competi-

tion. Then, the empty ranges on both sides of species

Fig. 1. Species distribution
with Gaussian carrying
capacity function for
different competition widths
2s. On each plot, dashed
line depicts the shape of the
carrying capacity curve,
normalized to a given
height. Black region denotes
the population distribution.
Variance of the bell-shaped
species distribution
decreases with increasing
competition width.
Parameters: v�/0.3;
s�/0.04, 0.08, 0.16 in
sub-figures (a), (b), (c),
respectively.
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x�/m give advantage to the two species next to these

ranges. And so on, the competitive advantages and

disadvantages build up gradually and a discrete species

distribution emerges.

The realistic case: fractal-like carrying capacity
functions

While the smooth Gaussian function in the role of the

carrying capacity curve leads to continuous coexistence,

a function with abrupt changes seems to result in

limiting similarity in the usual sense. These extremes

cannot tell us, however, what is the typical situation.

As a representative of a more natural function, we

investigate fractal-like perturbation of the Gaussian

carrying capacity. We chose:

K(x)�exp
�x2

2v2
(1�f(x)) (11)

where the perturbation term:

f(x)�k
XL

i�1

bicos(gix�8i) (12)

consists of periodic components with random phases.

The parameters k and g are constants. The amplitude of

the ith periodic component is

bi�1=in (13)

The phases 8i were chosen randomly for each simulation

run. The exponent h characterizes the fractal properties.

h�/0 for a white noise; Brownian motion is character-

ized by h�/1.

We stress that, since 8is remain constant during a

single run of the simulation, the random choice of them

does not introduce stochasticity into the dynamics.

Instead, this randomization ensures that each simulation

uses a different carrying capacity curve, characterized by

a common fractal exponent. Accordingly, each data

point in Fig. 5 and 6 represents an average over a class of

models.

Figure 5 shows the results with h�/0, 1, 1.5 respec-

tively. All simulations ended up with survival of a limited

number of species. The number of species at equilibrium

and, consequently, average phenotype distances change

with h. The number of coexisting species was averaged

over 50 simulations, differing in the random phases, for

each h and s combination (Fig. 6).

Distances increase with s in all cases and the slope of

the fitted line remains in the range 1.9s�/2.6s. The

departure from the linear dependence on Fig. 6 is related

Fig. 3. Phenotype difference between adjacent survivors as a
function of s and the fitted linear regression line (solid line) for
rectangular carrying capacity. Phenotype difference values are
calculated as the number of species at equilibrium divided by
the length of the phenotype interval. The steepness of the linear
regression line is 1.82.

Fig. 4. Species distribution for
different competition widths 2s,
when the carrying capacity
function is composed from two
Gaussians. Competition width
increases from left to right; s�/

0.04, 0.08, 0.16 in subfigures (a),
(b), (c) respectively. Other
parameters: v1�/0.3,
v2�/0.03, a�/0.1, m�/�/0.3.

Fig. 2. Species distribution
with rectangular carrying
capacity function for
different competition widths
2s. Only a finite number of
species coexist. The number
of coexisting species
decreases with increasing s.
Parameters: b�/0.6, c�/5,
s�/0.04, 0.08, 0.16 in sub-
figures (a), (b), (c)
respectively.
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to the fact that s is not small, compared to the total

phenotype interval, at the right end of the horizontal

scale.

Discussion

In this paper we have reconsidered the age-old problem

of limiting similarity in a Lotka�/Volterra model context.

The need for this re-evaluation came from the fact that

in different investigations the very same model was used

for both the justification and falsification of this

principle. Initiating the simulations with many equally

abundant species, closely packed along the phenotype

variable, we observed whether a limiting similarity type

of species distribution shows up. In line with theoretical

predictions, a yes-and-no picture emerged. As the issue

seemed to be related to the smooth-or-not nature of the

carrying capacity function, we investigated ‘‘natural’’,

i.e. fractal-like, functions with different fractal expo-

nents. We conclude that, in spite of the existence of

exceptional cases, the classical picture of limiting simi-

larity prevails, by and large. Especially, as a rule of

thumb, the typical distance between coexisting species is

near to the competition width 2s. This result seems to be

quite robust. We tested very different carrying capacity

functions, including families of fractal-like ones.

Nevertheless, the details of the final distribution of the

species in a specific simulation do not seem to be very

regular. The surviving species are not exactly equidi-

stant. Their abundances apparently depend on the exact

shape of the carrying capacity curve as well as on which

species survived. In most of the cases, the initial

distribution is so far from the final one, that there is

Fig. 5. Species distribution with
fractal-like carrying capacity
function for different fractal
dimensions h and competition
widths 2s. The h value increases
from the top down: (a�/c) h�/0,
(d�/f) h�/1.0, (g�/i) h�/1.5. s
increases from left to right for
each h value; (a, d, g) s�/0.02,
(b, e, h) s�/0.04, (c, f, i) s�/0.08.
v�/0.3 in all cases.

Fig. 6. Average phenotype
differences between adjacent
survivors p as a function of s
with fractal-like K(x).
Difference values were
averaged over 50 simulations
with different random choices
for the phases. Other
parameters: v�/0.3, (a) h�/0,
(b) h�/1.0, (c) h�/1.5. A
linear regression line (solid
line) was calculated for each h
(data points, denoted by
empty circles, were ignored).
Slopes of regression lines are
2.64, 1.97, 1.99, respectively.
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no reason to suppose that the limiting-similarity-type

outcome depends on the initial distribution. On the

other hand, in a specific simulation there is no reason to

expect the exactly same final distribution for a different

initial one.

In a specific simulation run, any species either

equilibrates with a finite abundance, or dies out. Its

growth rate converges to zero in the first case, but

remains negative in the second one. That is, in the final

state the growth rates of all extinct phenotypes are

negative. Consequently, the resulting species assemblage

is stable against invasion when any phenotype, which is

not present, is (re)introduced in small density (Jansen

and Mulder 1999, Bonsall et al. 2004). On the other

hand, the evolutionarily stable community/assemblage

needs not be unique, i.e. it may depend on the initial

conditions.

Obviously, our initial condition is far from being

realistic. In the real life, there is no such supply of an

almost continuous set of species. Our point exactly is

that limiting similarity emerges even from starting so

irrealistically far from that outcome.

Our simulation results are consistent with the empiri-

cal findings. On the one hand, character displacement

studies (Schluter 2000a, 2000b) demonstrated segrega-

tion of coexisting species in resource related traits. Note,

that similarity in the environmental requirements is also

necessary for coexistence (Leibold 1995, Chase and

Leibold 2003), so investigations based of phylogenetic

relationships (Webb 2000) will not necessarily demon-

strate any correlation between coexistence and dissim-

ilarity. On the other hand, the specific arrangement of

species of a community is influenced by many factors,

including the initial conditions, and is not predictable via

simple rules.

Limiting similarity is not without exceptions. In some

sense the non-existence of an absolute and model-

independent lower bound of similarity is trivial; in a

parameter-rich model one can always adjust the para-

meters to equalize the growth rates of the species.

Consequently, any set of strategies may be able to

coexist, irrespective of their similarity. The real issue of

coexistence starts when one refuses to fine-tune para-

meters. That is, the real question is whether the coex-

istence is robust against parameter changes.

This triviality was noted first by May and MacArthur

(1972) and May (1973). They varied the carrying

capacities of two, or three, species. The smaller the

interspecific competition, the wider the range of the

carrying capacities, which enabled coexistence, was. As

interpecific competition is supposedly related to the

ecological difference between species, this result means

that the coexistence becomes more robust with increas-

ing difference. That is, limiting similarity is a quantita-

tive issue. Similarity does not exclude coexistence, but

makes it less likely. This conclusion has been generalized

beyond the Lotka�/Voltarra context by Meszéna et al.

(in press).

Decreased competition between dissimilar species has

a regulating effect on their coexistence. Suppose that a

perturbation affects species A adversely, but not B. Then

the population size of A starts to decline. If the

intraspecific competition is larger than the interspecific

one, the decreased population size of A improves the

living conditions of A in a larger extent, than that of B.

This, in turn, compensates species A for the relative

disadvantage it has gained by the original perturbation.

Large niche overlap reduces this regulatory effect as both

species gain roughly the same advantage from the decline

of one of them.

The problem of continuous coexistence is a related

issue. For any given form of the competition kernel

a(x,y) and for any prescribed species distribution n(x),

the equilibrium condition (Eq. 6) determines a carrying

capacity function K(x), which allows the coexistence

with this specific species distribution. However, as

coexistence of similar strategies is possible only for a

narrow range of parameters, one may reasonably

presume that coexistence of a continuum of species

should be sensitive to an arbitrarily small perturbation.

In fact, this is the case.

Structural instability of Roughgarden’s example for

continuous coexistence was essentially noted already by

Sasaki and Ellner (1995). Their context was entirely

different; they considered mixed strategies in a fluctuat-

ing environment. Nevertheless, their criterion for an ESS

mixing distribution was identical to the equilibrium

condition for coexisting strategies in the Lotka�/Volterra

model. Consequently, their proof of the structural

instability of any ESS, which mixes a continuum of pure

strategies, translates to the structural instability of any

Roughgarden’s type of continuous coexistence. Geritz

(1995), Geritz et al. (1999) and Meszéna and Szathmáry

(2001) provided additional models in which continuous

coexistence appears, but only under structurally unstable

circumstances. Gyllenberg and Meszéna (2005) general-

ized these results by proving the structural instability of

any model, which allows continuous coexistence.

Haccou and Iwasa (1995, 1998) demonstrated a kind

of smoothness in the abrupt loss of the continuous

solution for the mixed strategy problem of Sasaki and

Ellner (1995). For small perturbations, the emerging

discrete distribution follows closely the original contin-

uous one. No similar general analysis is available for the

coexistence problem. Still, it is sensible to suspect that

the transition from continuous to discrete coexistence is

smooth, again. That is, small perturbation of Rough-

garden’s model probably allows coexistence of discrete,

but very similar, strategies. One may conjecture that the

minimal distance between coexisting species grows up

from zero continuously with the increasing departure

from the strictly Gaussian carrying capacity function.
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We did not attempt to follow this transition. Instead, we

compared the strictly Gaussian case with the distinctly

different ones and studied, what determines the lower

bound of similarity. In all cases we tried, we found that

the minimal phenotype difference is of the order of the

competition width.

The mechanism leading to limiting similarity is

transparent in the simple cases we presented. Local

maxima of the carrying capacity curve gives advantage

to some phenotypes. In turn, these favored phenotypes

impose competitive burden on the neighboring types

along the phenotype axis via competition. That is, the

not-very-smooth nature of the carrying capacity curve is

essential for limiting similarity. In this context, it was

essential to study choices somewhere in between the very

smooth and the sharply changing: the fractals.

We employed fractal functions to mitigate a serious

problem of mathematical ecology. In the ‘‘strategic’’ level

of modeling (Czárán 1998) the model ingredients are

chosen according to their simplicity, instead of their

empirical fidelity. The expectation here is, that the

simpler the choice is, the lesser the danger of introducing

artefactual details. Unfortunately, the ingredient func-

tions, which are the simplest choices from mathematical

point of view, are often very artificial. For instance, they

are either unnaturally smooth, like a Gaussian function,

or unnaturally discontinuous, like a step function.

Fractals and fractal-like functions are ubiquitous in

nature (Mandelbrot 1983). If a shape is influenced by

many processes, probably the system will not be

dominated by a single, or a few, characteristic scales

(Beran 1984). A scale-independent, self-similar pattern

may emerge as a result. Such shape is represented by an

autocorrelation function, which decays according to a

power law. The ‘‘fractal’’ exponent of the power law

characterizes the relative strength of the shorter and

longer correlations. Self-similar patterns have been

reported in many biological systems at all level of the

organization (Burrough 1981, Liebovitch and Sullivan

1987, Shlesinger and West 1991, Gunnarsson 1992,

Harte et al. 1999). The carrying capacity function is a

result of a complicated interplay between the ecological

interactions and the physiological constraints, i.e. the

genotype�/phenotype map. The process is likely to

involve many random components acting on multiple

time scales, leading to multiscaled randomness (Haus-

dorff 1996). As there is no reason to expect any

characteristic scale in such a carrying capacity function,

it is reasonable to endow it with fractal-like properties,

instead.

The fractal exponent n characterizes the relative

contributions of the different scales. The larger the

exponent is, the smaller the amplitude of small scale

perturbations. That is, a smaller n represents a more

rugged carrying capacity curve, while a larger one

represents a smoother one. Varying the fractal exponent

and choosing different phases in Eq. 12 allows us to

sweep through a representative variety of possible

carrying capacity functions. It is remarkable that our

findings were essentially independent of the fractal

exponent; fractal-like carrying capacity functions with

different exponents have uniformly led to limiting

similarity with roughly (2.39/0.3)s distance between

coexisting species, i.e. slightly higher than competition

width.

The Lotka�/Volterra model is often criticized as

‘‘phenomenological’’, as opposed to the mechanistic

models. Notwithstanding the success of mechanistic

level of modeling (Tilman 1982), it did not lead any

consistent understanding on the issue of limited similar-

ity. In particular, investigations hinted mechanism-de-

pendence neither for the validity of the limiting

similarity principle nor for the specific lower bound of

similarity. In the contrary, the universality across differ-

ent mechanisms (e.g. competition and predation) was

stressed by Leibold (1995), Chase and Leibold (2003).

Moreover, no principal difference between the phenom-

enological and mechanistic model is expected because

the Lotka�/Volterra model can be derived from a

mechanistic underpinning (Yodzis 1989). Moreover, in

any model one can locally linearize the density-depen-

dence, which leads to a Lotka�/Volterra model. Conse-

quently, any issue, like linear stability and robustness,

which can be studied via small perturbations, should be

the same in the original model and in its Lotka�/Volterra

approximation.

While Abrams (1983), Yodzis (1989) stress the model

dependence of limiting similarity, analytic investigations

(Gyllenberg and Meszéna 2005, Meszéna et al. in press)

testify for the generality of some basic issues. First,

simple counter-examples for limiting similarity exist

already in the very model, which was used to demon-

strate the principle. Second, both structural instability of

continuous coexistence and decreasing robustness of

coexistence for increasing similarity is proven generally.

This is the context, in which detailed numerical investi-

gations make sense: We have reasons to hope for the

general relevance of our conclusions.

In particular, competition kernels, other than the

Gaussian, are not expected to lead to essentially different

results. It is clear, that the carrying capacity curve, which

allows continuous coexistence, can be constructed for

any competition function via the equilibrium equation

(Eq. 6). An infinitesimal perturbation of this carrying

capacity will destroy the continuous coexistence, again

(Gyllenberg and Meszéna 2005). Note that the standard

deviation is not necessarily a good measure of the

competition width for competition functions other

than the Gaussian (Yodzis 1989).

The misleading exceptionality of Roughgarden’s

model exhibits a serious methodological problem of

ecological modeling. Nevertheless, the careful investiga-
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tion of the Lotka�/Volterra model in the context of

analytical investigations provides a strong case for the

practical relevance of the principle of limiting similarity.
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