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Abstract

Spatial niche segregation between two habitats and the related adaptive dynamics are investigated.
Independent population regulations operate in the two patches by a single resource in each. The
populations migrate between the habitats with a constant rate. In line with a general mathematical
concept published elsewhere, the niche of a species is described by the measures of the two-way
interactions between the species and the resources. Increasing migration rate tends to equalize the
population sizes between the habitats and diminish the dependence of the niches on the environ-
mental tolerances of the species. In line with the expectations, when two species coexist, their
realized niches are more segregated than their fundamental ones. We demonstrate that robust co-
existence requires sufficient niche segregation. That is, the parameter range that allows coexistence
of the two species shrinks to nil when the niche-differences between the species disappear. In turn,
niche segregation requires separation of tolerances and sufficiently low migration rate. For the evo-
lutionary study we assume a continuous, clonally inherited character that has different optima at
the two patches. Evolution of this trait may end up in an intermediate “generalist” optimum, or
it can branch and leads to a dimorphic population. The condition of the latter outcome is in line
with the conditions that allow niche segregation: The patches have to be sufficiently different and
the migration has to be sufficiently low.

1 Introduction

Hutchinson’s (1959) famous question, “Why are there so many kinds of animals?”, was an evolu-
tionary one and an ecological one at the same time. His essential answer originates from Darwin
(1859): each species is a unique adaptation to something. That “something” was later considered as
the “niche” of the species (Grinnel, 1914; Elton, 1927). It was established that coexistence requires
niche segregation (Gause, 1934). The concept of “niche” deserves a central place in evolutionary
ecology, analogously to the role of “fitness” in evolution. However, the first one is often considered
too vague and too tautologic to be useful; a status similar to that of the latter several decades ago.

As a more recent development, theory of adaptive dynamics (Metz et al. 1996; Dieckmann
& Law, 1996; Geritz et al., 1997, 1998; Meszéna et al., 2005; Durinx et al., 2007) establishes a
clear connection between the ecological and the evolutionary aspects of species diversity on the
principal level. On the ecological side, the “basic tenet” of niche theory (Case, 2000, p. 368) states
that increasing niche segregation weakens competition between the involved species. Lowered inter-
species competition provides an advantage to the rare species as compared to the abundant one,
stabilizing their coexistence (Chesson, 2000a). From an evolutionary point of view, a rare advantage
corresponds to negative frequency dependence (Christiansen, 1988; Bulmer, 1994, p. 124). In turn,
frequency dependence may lead to evolution towards a fitness minimum (Eshel, 1983). Then the
emerging disruptive selection leads to evolutionary branching in asexual models (Geritz et al., 1997,
1998). For sexual organisms, it was proposed, that the very same selection regime may select also
for reproductive isolation between the branches, leading to adaptive (or competitive) speciation
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(Rosenzweig, 1978; Seger, 1985; Dieckmann & Doebeli, 1999; Dieckmann et al., 2004). Easiness
and importance of this mode of origin of a new species are ongoing debates; see Gavrilets (2005)
for a skeptical opinion.

The intuitive notion of niche was profoundly shaped by Hutchinson (1978) when he introduced
the “niche space of niche variables” picture. His distinction between the “fundamental” and the “re-
alized” niches found its invariant place in ecology textbooks. Following Grinnel (1904), Hutchinson
recognized two kinds of niche segregation: Species may adapt to different environmental conditions
(“scenopoetic” niche axis) or to different kinds of food (“bionomic” axis). We will refer to these two
cases as “habitat” and “functional” segregation, respectively. One should also recognize that conti-
nuity is not an essential feature of the niche “space”. If the environment consists of a continuum of
seed-sizes to consume, then seed-size can be considered as a continuous niche axis to be partitioned
by the consumer species. However, if there are only two distinct types of food, then the consumers
can partition only this two-element set. Thus, logically, this finite set of different resources must
be considered as the niche space (Rescigno & Richardson, 1965; Petraitis, 1989). Analogously, if
two different habitats are available, then we have two different niches (Levene, 1953). On the other
hand, one should consider an environmental gradient as a continuum of habitat-niches.

Terminology varies: In many contexts, the meaning of niche is restricted either to the functional,
or to the habitat sense (see the historical analysis of Leibold, 1995; Chase & Leibold, 2003). On
the evolutionary side, in most cases, adaptive/competitive speciation is considered in connection
with local, functional niche segregation. This is due to the fact that the traditional “allopatric”
theory of speciation (Mayr, 1942; Gavrilets, 2004) postulates the necessity of spatial segregation
between old and new species. Therefore, the empirical evidences (Schileven et al, 1994; Via, 2001)
for sympatric speciation necessitate a new theory of speciation. Adaptive speciation is regarded as
an explanation for this “surprising” way of emergence of a new kind of creature.

If the functional and the habitat segregations are comparable ways of decreasing interspecies
competition, one may wonder if the latter one can also be the basis of competitive speciation. To
explore this possibility, Meszéna et al. (1997) provided the analysis of adaptive dynamics in a
two-patch environment (see also Day, 2000). The main conclusion was that evolutionary branching
can be initiated either by increasing the difference between the environmental conditions in the
two patches, or by decreasing the migration between them. Mizera & Meszéna (2003) investigated
the adaptive dynamics of the corresponding continuous niche space, the environmental gradient;
Doebeli & Dieckmann (2003) studied emergence of reproductive isolation in the same context.

The underlying problem is, that – while adaptive dynamics provides a fairly general connection
between ecology and evolution – the many different ways of competitive coexistence are often studied
via unrelated models at the ecological level (see Amarasekare, 2003 for a recent review). Tradi-
tionally, the Lotka-Volterra competition model (MacArthur & Levins, 1967) is used to demonstrate
the principle of niche partitioning. It is a phenomenological model, that postulates the connec-
tion between competition and niche overlap. In some simple cases of resource competition the
mechanistic modeling of the resource-consumer interaction faithfully reproduces the Lotka-Volterra
assumptions (MacArthur, 1969; Yodzis, 1989, p.119; Tilman, 1982). However, for the general case,
the Lotka-Volterra model is no more than a mathematical illustration of the principle.

Prevalence of limiting similarity is a quite common conclusion of investigations (Abrams, 1983).
However, no model-independent minimum of allowed similarity could be found to find (May &
MacArthur, 1972; Rosenzweig, 1995, p. 127). To remedy this situation, Meszéna et al. (2006)
introduced a model-independent theory of limiting similarity and niche segregation (see also Szabó
& Meszéna, 2006a). They demonstrated that large overlap of the – properly defined – niches results
in a decreasing and, eventually, disappearing likelihood of coexistence. This conclusion establishes
a firm mathematical basis for the connection between Gause’s principle and the notion of niche.

Application of this theory for functional niche segregation is straightforward. Here we are
concerned with the next step: the analysis of spatial niche segregation as an ecological underpinning
of the possibility of geographical adaptive speciation. We use the two-patch model of Meszéna et al.
(1997) as the context of our investigation. Section 2 summarizes the reference theory of Meszéna
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et al. (2006). Section 3 introduces the specific model. We also provide the niche-analysis first for
a single species and for two coexisting ones. Finally, we compare our findings with the adaptive
dynamics of the model.

2 Background: coexistence and niche segregation

Here we summarize the theory of limiting similarity by Meszéna et al. (2006). The goal is to remedy
the “phenomenological” status of the Lotka-Volterra competition model, and to replace it with a
theory of potential quantitative fidelity without sacrificing generality. In particular, we ought to
substitute the notion of resource utilization function with something that is clearly defined in any
ecological situation.

The classical concept of limiting similarity (MacArthur & Levins, 1967) postulates that inter-
species (resource) competition is proportional to the overlap of the resource utilizations of the two
species. If species 1 consumes a given kind of resource, then the decreasing concentration of that
resource affects the growth rate of species 2 provided, that species 2 utilizes the same food. This
intuition becomes precise when we consider the impact of species 1 on the resource concentration
and the sensitivity of species 2 towards this concentration.

We will need a generalization of the notion of resource. An environmental factor/variable will be
considered as a “regulating” one, if it is involved in the feedback loop of population regulation. (See
Krebs, 2001 for the distinction between limiting and regulating factors.) While, in case of resource
competition, the number of coexisting species is limited by the number of resources (MacArthur &
Levins, 1964; Armstrong & McGehee, 1980), a similar statement holds for the number of regulating
factors in the general situation (Levin, 1970; Heino et al., 1997). We shall consider the species’
impact on, and sensitivity towards the regulating factors. Competition between two species is
reduced if they differ with respect to their impact and sensitivity towards the regulating factors.

The set of regulating factors constitutes the – either discrete, or continuous – niche space to be
partitioned between the species. A “niche axis” of Hutchinson corresponds to a continuum of the
regulating factors. Along a bionomic axis (functional niche segregation) one has to consider all seed-
sizes as different factors. Along a scenopoetic axis (habitat segregation) the resource concentrations
at the different locations (under different environmental conditions) are to be considered as different
regulating variables.

In quantitative terms, write the dependence of the growth rate of the ith species (i = 1, 2, . . . , L)
on the densities n1, . . . , nL, as

ri = ri (I(n1, n2, . . . , nL)) (i = 1, 2, . . . , L), (1)

where the vector I = (I1, I2, . . . , ID) collects the D number of regulating variables. Then, the
elements of the competition (or community) matrix are

aij = − ∂ri

∂nj

=

D∑

k=1

SikCjk = Si · Cj , (2)

where the partials

Cik =
∂Ik

∂ni

, Sik = − ∂ri

∂Ik

(3)

measure the ith species’ impact on, and sensitivity towards, the kth regulating factor, respectively
(the chain rule was used). The vectors Ci = {Ci1, Ci2, . . . , CiD} and Si = {Si1, Si2, . . . , SiD} will
be referred to as the impact and sensitivity niches of the ith species. The negative sign in eq.
(2) corresponds to the choice that the competition coefficients are positive for negative interaction
between the species. Negative aij represents a positive influence. The sign convention in eq. (3)
means that (in case of resource competition) we will consider the exploitations as the regulating
variables.
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As the equilibrium conditions ri(I) = 0 represent L equations for the D variables, generically
L ≤ D must be satisfied for the existence of the community. Coexistence of L populations requires
L different regulating mechanisms to adjust all population sizes for equilibrium when all growth
rates are zero. Accidentally, it is possible to have equal birth and death rates without regulation.
However, such unregulated equilibrium disappears suddenly if, by whatever reasons, an arbitrarily
small additional mortality starts to affect some, but not all, populations. That is, the essential
issue of coexistence is the robustness against an extra mortality.

Imagine that a sufficient number of regulating factors are present, but some of them are very
similar to each other from the point of view of the species (see Abrams, 1988 for an analysis of
this problem). This is an intermediary situation between having, or not having L independent
regulating mechanisms. Alternatively, assume that the regulating factors themselves are different
enough, but the species are not, again leading to the situation in which the existence of L different
regulations is in doubt. Then the community is regulated, but weakly. It has some tolerance
towards additional mortalities, but only a weak one. While an infinitesimal additional mortality
does not destroy coexistence, a small one does.

More quantitatively, assume that an environmental change imposes additional mortalities, de-
noted by ∆i for the ith species. Then the new equilibrium equations read as

ri (I(n1, n2, . . . , nL)) − ∆i = 0 (i = 1, 2, . . . , L). (4)

∆i = 0 corresponds to the original situation; negative ∆is mean newly acquired advantages. The
sensitivity of the equilibrium population sizes towards the additional mortalities can be determined
by implicit differentiation:

∂ni

∂∆j

= −
L∑

j=1

(a−1)ij∆j = − 1

J

L∑

j=1

adj(a)ij∆j , (5)

where adj(a) denotes the adjunct of the community matrix. The determinant J = det(aij) measures
the strength of regulation on the community level. As it appears in the denominator, a weakly
regulated community is sensitive towards the extra mortalities. If the sensitivity niches of two
different species coincide, the corresponding two rows of matrix a are the same and J = 0. This
situation is approached when two of the Si vectors are similar. That is, similarity of the sensitivity
niches results in small J and weak regulation. A similar argument holds for the impact niches
and for the columns of the matrix. Whilst a weakly regulated community reacts to any change of
the external parameters with a large change in its population size, a small perturbation can drive
some of the populations into extinction. Therefore the existence of the community is restricted
to a narrow region of the ∆ parameter space. Robust coexistence requires strong regulation and,
consequently, sufficient difference between the impact, as well as between the sensitivity niches of
the species forming the community, (see Meszéna et al., 2006 for the more precise analysis).

Our interest here is to apply these concepts for spatially distributed populations. If the en-
vironment consists of different patches with local resource limitation (e.g., the resources do not
diffuse freely between the habitats, see also Szabó & Meszéna, 2007), the same resource in the
different patches behaves as different regulating factors. Is this way, the notion of the regulating
variables unifies the cases of “single patch, two resources” and “two patches, one resource”. In both
situations, at most two species can coexist.

We are interested in the regulation of the populations as a whole, because the possibility of
coexistence is determined at a global level. Accordingly, we have to consider the total number
of individuals on the whole territory as ni, while ri should be the overall growth rate of the ith
population, as determined by the theory of structured populations (Metz & Diekmann, 1986; Metz
et al., 1992; Caswell, 2001). If population regulation operates locally, the regulating variables of the
different localities must be considered as separate variables, each of them having a contribution to
the overall regulation. We have to assess the derivatives (3) while the spatial distribution remains

4
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in equilibrium. As we will see, this can be different from having a fixed spatial distribution, as
changing the total population size may change the equilibrium distribution also.

In a thought experiment, one can apply any combination of extra mortalities (the ∆is) to the
populations and observe the correlated change of the equilibrium population sizes of the species and
the regulating variables. (The additional mortalities can also be interpreted as removal rates, that
maintain a chemostat-like constant growth rate ri = ∆i.) From this data set one can reconstruct
the functions r(I) and I(n1, n2, . . . , nL) together with their derivatives, the niche vectors. This
is the unique correct definition as long as the robustness analysis is the intended use of the niche
vectors.

3 Model definition

Following Meszéna et al. (1997), we consider an environment consisting of two habitats of equal size,
A and B, with different environmental conditions. We assume independent population regulation in
the patches (Levene, 1953; “soft selection” regime, Christiansen, 1975). As the number of regulating
factors is D = 2, at most two species can coexist in equilibrium.

The regulating variables (e.g. the local resource exploitations) are denoted by IA and IB in
the two habitats. Resource exploitation is proportional to the total number of individuals in the
respective patch. Without losing generality, we chose the constant of proportionality to be 1, i.e.,

IX =
∑

i

niX (6)

for the patch X = A, B; niX is the density of the ith species in patch X .
The tolerance of species i towards the environmental condition in patch X is specified by the local

intrinsic growth rate r0
iX . The actual growth rate is negatively affected by the resource exploitation

IX in the patch:
riX = r0

iX − αIX (i = 1, 2; X = A, B), (7)

where α characterizes the strength of regulation. In the evolutionary study in Section 4.3 (but only
there) we assume that a species’ tolerances are determined by an evolvable trait, or strategy, x. The
trait has different optima, denoted by xopt

A and xopt
B in the two patches. Then, the local intrinsic

growth rate of strategy x in patch X is specified, as

r0
X(x) =

1√
2πσ

exp

[

− (x − xopt
X )2

2σ2

]

. (8)

We assume a constant migration rate µ for all species. The population dynamics is defined as

d

dt

(
niA

niB

)

=

(
riA − µ µ

µ riB − µ

) (
niA

niB

)

(9)

for all i. Note that the dynamics of the different species are coupled through the regulating variables.
The matrix on the r.h.s. of the equation will be referred to as the “dynamical matrix”. The overall
growth rate of the population and the dynamics of spatial relaxation at fixed values of the regulating
variables can be calculated from the eigenvalues of this matrix (Box 1).

We found no other internal attractor than a unique fixed point. The equilibrium distribution was
determined by fourth-order Runge-Kutta numerical integration of the dynamics until convergence.

The niche vectors were calculated in two ways with coinciding results. First, they were de-
termined via numerically reproducing the thought experiment described at the end of Section 2.
Second, they were calculated from the equilibrium distribution by the analytic formulas of Box 2
(see the Appendix in Supplementary Material for derivations).
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Box 1: Population growth and relaxation in the model

Following the lead of Metz & Diekmann (1986), Diekmann et al. (1998, 2001,
2003) consider first the dynamics of a population at fixed I. This condition
means that the loop of population regulation is cut open, the populations become
independent and grow exponentially after an initial spatial relaxation.

The relevant quantities are the two eigenvalues of the dynamical matrix:

̺±i =
riA + riB

2
− µ ±

√
(

riA − riB

2

)2

+ µ2.

The exponential growth rate that plays the role of overall growth rate ri in the
general setup of Section 2, is the leading eigenvalue, i.e., ri = ̺+

i (see Metz &
Diekmann, 1986; Caswell, 2001 for the general idea and Meszéna et al., 1997 for
the specific calculations). It is instructive to calculate two limiting cases:

ri ≈
{

(riA + riB) /2 if µ ≫ |riA − riB|/2,

max (riA, riB) − µ if µ ≪ |riA − riB|/2.

While the overall growth rate is the average of the local growth rates when the
migration is high, it roughly equates to the higher local growth rate when the
migration is low.
The equilibrium distribution is given by the eigenvector of the dynamical matrix.
It is easy to see, that an additional mortality, which is the same in the two
patches, does not alter this distribution. The rate of relaxation to the equilibrium
distribution is determined by the difference between the two eigenvalues:

∆̺i = ̺+
i − ̺−i =

√

(riA − riB)
2

+ 4µ2.

Observe that there are two processes contributing to this relaxation. The
first one is the difference between the local growth rates. It tends to redistribute
the population into the patch that is better for the species. Another one is the
migration that tends to equalize the distribution between the patches. When
riA − riB = µ = 0, there is no relaxation, i.e., the initial distribution is retained.

Consider now the realistic case when the regulation loop is closed. Then,
the regulating variables are adjusted until the equilibrium condition ri = ̺+

i =
0 is met. An additional mortality may change the equilibrium distribution
through modifying the equilibrium I. This effect becomes stronger, when the
I-independent relaxation is weak, i.e., when ∆̺i is small.

4 Results

Behavior of any population is characterized by four two-dimensional vectors; the two dimensions
correspond to the two habitats:

• The vector r0
i = (r0

iA, r0
iB) of tolerances.

• The vector ni = (niA, niB) of abundances.

• The impact niche vector Ci = (CiA, CiB).

• The sensitivity niche vector Si = (SiA, SiB).
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r0
i is a fixed property of the species. Its direction represents the relative tolerance with respect

to the patches. A change of the length of r0
i would correspond to an increase/decrease of the fitness

of the species. We will chose all tolerance vectors to have the same length, because the fitness
differences will be scaled via the (possibly negative) extra mortality ∆i. Note, that it is a matter of
definition, which mortality is considered as “extra”. Accordingly, ∆i = 0 means nothing else here,
than correspondence to the arbitrary choice of having tolerance vectors of equal lengths.

The vectors ni, Ci and Si of a species are determined together by its tolerance vector, the
migration rate and the possible competition between the species. Fig. 1 shows the behavior of
the four vectors for a single species at different migration rates. Fig. 2 demonstrates the effect
of competition, i.e., the comparison between the behavior of two species, when alone, and when
together. Fig. 3 depicts the detailed dependence on the migration rate in a different representation:
the angle between the respective vector and the A axis is plotted. Figs. 4 and 5 present the results
on the robustness of coexistence. Figs. 6 and 7 are about the evolutionary results.
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Figure 1: The four two-dimensional vectors, describing a lone population, at different values of
the migration rate µ. The tolerance vector r0

1 = (0.04, 0.01) is a fixed property of the species,
independent of µ. The angle between this vector and the 450 direction is a measure of specializa-
tion. The vector n = (nA, nB) of abundances approaches the 450 direction – representing the even
distribution – with increasing migration. The impact niche C and the sensitivity niche S behaves
similarly. (α = 0.008 is used here and for the other figures.)

4.1 Fundamental niche of a single species

Hutchinson’s (1978) distinction between the fundamental and the realized niches is implemented
by calculating the niche of a species in absence, and in presence, of its competitors, respectively
(Meszéna et al., 2006). Here we study the (fundamental) niche of a lone species; the (realized)
niches of coexisting species will be considered in the next section.

The abundance vector n of our species behaves as it is expected intuitively. At very low
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Box 2: Niche vectors of the model

We provide analytic formulas for the niche vectors; see the Appendix in Supple-
mentary Material for the derivations. For the ith species, the sensitivity niche is
determined by the distribution of the species between the patches:

Si =
α

(n2
iA + n2

iB)

(
n2

iA

n2
iB

)

.

The sensitivities are proportional to the square of the local densities due to the
following reasons. First, the larger the fraction of the population living in one
of the patches is, the more sensitive its overall growth rate is to the resource
exploitation in that patch. This effect alone would lead to a simple proportionality.
Second, the individuals themselves have different possibilities to contribute to the
future generations depending on the quality of their patch. The latter effect
is described by the notion of the “reproductive value” of the individual in the
given patch. The reproductive values are elements of the left eigenvector of the
dynamical matrix, while the equilibrium distribution corresponds to the right
eigenvector (Caswell, 2001). As our dynamical matrix happens to be symmetric,
the left and the right eigenvectors are the same. That is, the reproductive value
in a patch is proportional to the population density in that patch, leading to the
quadratic dependence of the sensitivity.
The impact niche is

Ci =
1

2G + 1

[(
niA/ni

niB/ni

)

+ G

(
1
1

)]

,

where
G =

∑

i

α

∆̺i

niAniB

niA + niB

.

(ni = niA + niB is the total population size of species i.)
The first term is easy to interpret: the impact of a population on one of

the patches is proportional to its relative abundance in that patch. The second
term is a consequence of the fact that the population distribution changes with
perturbation. The second term is large, when the small ∆̺is make the change of
the distribution significant (Box 1). In case of µ = 0, the local growth rates are
regulated to zero independently (i.e., riA = riB = 0), implying ∆̺i = 0. Then
the second terms dominates Ci, that has direction 450.

migration rates, the population lives predominantly, but not exclusively, in the patch which is
better for it. Increasing the migration rate tends to equalize the local abundances. That is, the
angle of vector n converges to 450 with increasing migration rate (Fig. 1; Fig. 3 top row, continuous
curve).

The sensitivity niche vector S behaves similarly. The population, as a whole, is more sensitive
to the patch which is more suitable for it. This is a double effect. The inferior patch contains a
smaller fraction of the population and any specific individual in that patch has a disadvantage in
contributing to the future generations (Box 2). Therefore, the difference between the sensitivities
in the two patches is more pronounced than between the densities. As plotted in Fig. 3 (top
row, dotted curve), the sensitivity niche vector lies further apart from the 450 direction, than the
abundance vector. Still, the two vectors share the property of converging to the 450 direction for
large migration rate.
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The impact niche vector C is a sum of two vectors. One of them is proportional to the abundance
vector, while the other one has a 450 direction (Box 2). (The latter component is the consequence of
the fact that the equilibrium population distribution also changes as a consequence of the perturba-
tion of the total population size.) Therefore, vector C lies in between vector n and the 450 direction
(Fig. 1; Fig. 3, top row, dash-dotted curve). Direction of vector C changes non-monotonously with
migration rate (Fig. 3).

At µ = 0, C lies exactly in the 450 direction. In this case the subpopulations in the two patches
are regulated separately. An additional mortality decreases the two local densities by the same
amount, instead of by the same ratio. With slightly increased migration rate, the direction of
C approaches the direction of n. Then, at a high migration rate, n and C converge to the 450

direction together.
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Figure 2: Effect of competition on two coexisting species, which are characterized by the tolerance
vectors r0

1 = (0.04, 0.01) (the same as in Fig. 1) and r0
2 = (0.02, 0.036). In the n, C and S

plots, the dashed and solid arrows represents the populations, when alone, and while they coexist,
respectively. Competition makes the population distributions and the niches more segregated. (µ =
0.01 is used.)

4.2 Niche segregation between two species

Consider now the coexistence of two species. Fig. 2 demonstrates the effect of competition on the
vectors n, C and S. One can observe that the spatial distributions of the coexisting species are
more segregated than their distributions, when alone. The same applies to the Cis and the Sis, as
the niche vectors are related to the abundance vector (Box 2). Using the Hutchinson’s term (1978),
the realized niches are more segregated than the fundamental ones.

Fig. 3 depicts the same comparison as the function of the migration rate. Without migration,
the “coexisting” Species 1 and 2 are completely segregated into patches A and B, respectively.
Their impact and sensitivity niches behave accordingly. This remains true even if one considers a
competition of the specialist Species 2 with a generalist one denoted by G.
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Figure 3: The angle of vectors n, C and S with respect to axis A, as a function of the migration
rate. The two specialist species (denoted by “1” and “2”) are characterized by the tolerance vectors
that were used already in Fig. 2. The generalist Species “G” has the uniform tolerance r0

G =
(0.029, 0.029). The two upper plots represent the specialists, when alone. The lower plots depict
coexistence of Species 2 with Species 1 (bottom left) and with Species G (bottom right). Again,
coexistence makes the populations more segregated. At extremely low migration they are separated
completely.

While the two patches are equally appropriate for the generalist without competition, it is
restricted to patch A when patch B is occupied by the specialist.

In particular, note that the angle of the impact vectors of the two coexisting species are 00 and
900 (i.e., the segregation of the impact niches are complete) for µ = 0, despite the fact that both
of the fundamental impact niches have the angle 450.

Complete segregation at zero migration rate implies that weak enough migration results in wide
segregation of the realized niches even if the difference in the tolerance vectors (consequently: the
difference in the fundamental niches) is not so large. That is, a relatively low physiological difference
may be sufficient for robust coexistence provided that the migration is weak.

Similarly to the one-species case, the increasing migration makes the distributions more even,
i.e., the angle of the vectors ni, as well as the niche vectors, approach the 450. That is, the
segregation of the fundamental as well as of the realized niche diminishes with increasing migration
even if the difference in the tolerance vectors is significant.

These results indicate that the dissimilarity of the tolerance vectors and the migration rate are
the two relevant variables that determine the segregation of the realized niches. We demonstrate
the connection between the robustness of coexistence and the niche dissimilarity in both respects.

Fig. 4 presents dependence on the angle between the two tolerance vectors at a given value of
the migration rate. The unsurprising observation is, that the dissimilarity of the abundance vectors,
as well as the dissimilarity of both kinds of niche vectors go to zero together with the dissimilarity
of the tolerance vectors. The significant point is that the region of the extra mortality, that allows
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coexistence, also shrinks to nil.
If the tolerance vectors of the two species coincide, the (neutral) coexistence requires exact

equality of the fitness’; an arbitrarily small extra mortality is detrimental for the coalition. At
a small difference between the tolerances, a small difference in the fitness is allowed. Robust
coexistence, that is not very sensitive to external perturbations, requires significant difference in
the tolerances.

Fig. 5 depicts the dependence on the migration rate. In this specific example, at ∆1 = 0, the first
species dies out when the migration rate becomes larger than a given value. However, this threshold
is not a strict upper bound on migration, or on niche similarity, that constrains coexistence. Species
1 dies out because it is more specialized, than Species 2, so it is affected adversely by increased
migration. If this negative effect is compensated by a fitness advantage represented by a negative
∆1, coexistence is still possible, and remains possible even at high migration rates.

Nevertheless, this additional gain in fitness should not be too large, because Species 2 will be
outcompeted then. At a large migration rate, only a small range of ∆1 allows coexistence. Just like
increasing similarity of the tolerances, increasing migration decreases niche-segregation, therefore
it is detrimental to coexistence. Note that our Figs. 4 and 5 are in complete analogy with Fig. 6.4
of May (1973, p. 158).
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Figure 4: Robustness of coexistence of two species against an extra mortality. ∆1 of the first species
is plotted as a function of the angle between the two tolerance vectors. Species 1 is characterized
again by the tolerance vector r0

1 = (0.04, 0.01). The tolerance vector of Species 2 is specified via
the angle between the two vectors. The grey region represents the interval of the extra mortality,
which allows coexistence, as a function of the migration rate. The curves depict the angle differ-
ence between the two n vectors, the two Cs and the two Ss. Observe the correlated changes: As
the direction of the tolerance vectors become more similar, so do the niches of the two species.
Consequently, the region of coexistence shrinks.(µ = 0.01 is used.)

4.3 Evolving tolerances

Now we turn our attention to the adaptive dynamics of the model following Meszéna et al. (1997).
The relevant evolutionary question is whether a single strategy, a “generalist”, or a pair of specialists
will exploit the two patches.

The tolerance vector of a species is now determined by its strategy x through eq. (8). In line
with the methodology of adaptive dynamics (Metz et al., 1996; Meszéna et al., 1997; Geritz et
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Figure 5: Robustness of coexistence of the two species of Fig. 2 against an extra mortality ∆1 of
the first species is plotted as a function of migration rate. Notations are the same as in Fig. 4.
Robustness decreases with increasing migration, as the niches become similar. Increasing migration
is more advantageous to the more generalist type, so the more specialized Species 1 dies out at
µ = 0.041. At a larger migration rate, coexistence is possible only for negative ∆1. The allowed ∆1

interval is getting narrower with the increase of µ. (The curves are calculated for ∆1 = 0, so they
are not continued after µ = 0.041.)

al., 1997, 1998), the strategy is clonally inherited. Populations of the existing strategies follow the
dynamics (9). Occasionally, a mutant strategy that is similar to an already existing one appears
with a low population size. Strategies reaching an extremely low population size are considered
extinct.

We choose σ = 1 in eq. (8) as a fixation of the scale and specify that

xA =
d

2
and xB = −d

2
, (10)

where d = xA − xB is the difference between the two optima. Note that x = 0 is the “central”
strategy that implement the compromise between the two patches. We have two free parameters
to specify the evolutionary problem: the patch difference d and the migration rate µ. The fitness
of a strategy can be defined by its exponential growth rate r, as calculated in Box 1 (Metz et al.,
1992).

It is instructive to consider first the symmetric situation, when the two patches are equally
exploited: IA = IB (Fig. 6). This happens if either the central strategy is present alone, or two
symmetrically located strategies exist in equal size. According to Box 1, in the case of a large
migration rate the fitness function is the sum of two Gaussian functions, with distance d between
their peaks. This sum is unimodal for a small d, but bimodal for a large one. On the other hand, if
µ is small, the fitness is the maximum of the two exponentials. Such a function is always bimodal.
That is, in the symmetric case, the fitness function is unimodal with a fitness maximum at the
central strategy for large µ and small d. Either decreasing migration or increasing patch difference
lead to bimodal fitness function with a minimum at the central strategy.

This analysis specifies the evolutionary stability of the central strategy. It is an ESS if and
only if the patch difference is small enough and the migration rate is large enough. This result is in
agreement with common sense as well as with the niche analysis of the previous sections: significant
patch difference and low migration make specialization to one of the patches possible.
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Asymmetric loading of the patches by a specialized strategy introduces negative frequency de-
pendence as adaptation to the overloaded patch becomes less favoured. The possible consequence is
that evolution may converge first to the central strategy, even if it is not an ESS. Then, evolutionary
branching happens, and two specialist strategies appear. The phase portrait in the leftmost pane of
Fig. 7 depicts the stability of the central strategy as a function of the parameters. First, decreasing
migration and/or increasing patch difference changes this strategy from an ESS to a branching
point. Further parameter change, however, makes the central strategy so disadvantageous, that it
becomes an evolutionary repellor.

The more complete evolutionary behavior of the model is represented on the remaining two
panes of Fig. 7. When the generalist strategy is a repellor, evolution converges to a more specialized
strategy and may or may not branch there. Evolutionarily stable coexistence of two specialist may
be possible even if it is evolutionarily unreachable from a monomorphic case. See Meszéna et al.
(1997) for further details.

d=3.0 µ=0.6

d=3.0 µ=0.05d=1.5 µ=0.05

d=1.5 µ=0.6

Figure 6: Invasion fitness function for four combination of the patch difference d and migration
rate µ in the evolutionary version of the model. Horizontal axes: strategy; vertical axes: fitness.
It is assumed that the two patches are loaded symmetrically. This happens, for instance, if the
central strategy is the only one present. The central strategy is a local maximum (an ESS) if the
patch difference d is sufficiently small and the migration rate µ is sufficiently large. In the rest
of the cases, when either the migration rate decreases sufficiently, or the patch difference increases
sufficiently, the central strategy becomes a pessimum between two – more specialized – optima.

5 Discussion

Our investigation was motivated by the possible evolutionary consequences of the symmetry between
the habitat and the functional types of niche segregation. Does the corresponding symmetry exist
in the speciation modes also? The main stumbling block to study this issue is the lack of conceptual
clarity of the notion of niche (Leibold, 1995). Here we made a step forward to rectify the situation
by modeling the spatial niche segregation in a precise theoretical context of Meszéna et al. (2006).
We learnt that the conditions of a significant niche segregation and of the possibility of evolutionary
branching are analogous: Both of them require a sufficiently high difference between the habitats
and sufficiently slow migration between them.
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Figure 7: Behavior of the evolutionary model. (a) Phase portrait of the stability of the central
strategy as a function of parameters: the patch difference d and the inverse migration rate 1/µ.
The other two panes depict the complete behavior as a function of the inverse migration rate at
fixed d = 1.5 (b) and as a function of the patch difference with fixed µ = 0.1 (c). In (b) and (c),
vertical axis is the strategy. The dotted-dashed lines at x = ±d/2 represent the local optima in the
patches. All other lines represent singular strategies. Thin lines: monomorphic singular strategies;
the thick line: dimorphic singular strategy. Continuous lines: ESS; dashed: branching strategy;
dotted: repellor.

Meszéna et al. (2006) identifies the niche “space” to the set of regulating factors, which is
either a discrete or a continuous set. This picture is in line with the classical, intuitive one: The
species partition the kinds of regulating factors between themselves. Resources in different habitats
should be counted as different regulating factors. Here we studied the minimal model of the discrete
habitat segregation. Our analysis of the two-patch situation complements Tilman’s (1982) study of
coexistence on two resources. The third way of niche segregation, the temporal one (Christiansen
& Fenchel, 1977, Chesson, 2000b), is not discussed here.

The niche of a species is usually specified by its “resource utilization”. Unfortunately, resource
utilization is a phenomenological term; there is no unequivocal prescription to measure it. Opera-
tionally, one can study two questions (cf. Fig. 2 in Goldberg, 1990). How does resource availability
depend on the population density? And how does population growth rate depend on resource
availability? The differential measures of these relations, the impact and sensitivity vectors to-
gether constitute the proper representation of the niche of a species (Meszéna et al., 2006). The
essential issue that makes the habitat segregation more complicated than the functional one is the
role of the spatial distribution of the population. In this case, one should define/measure impact
and sensitivity with extra care: The spatial distribution should remain in equilibrium during their
determination.

Note that the niche theoretical relevance of the two-way interaction between a population and
its environment was first emphasized by Leibold (1995). He distinguished between “requirement”
and “impact” niches and analyzed the history of the niche concepts in these terms.

The abundance vector is a reasonable proxy to the niche vectors, because in general they behave
qualitatively similarly to the function of the parameters; the niche vectors are actually calculable
from the abundance vector. In contrast, the tolerance vector fails to take into account the migration
and the resulting source-sink structure of the population, so it is an appropriate proxy for niche
only if the effect of migration is negligible. The relevance of this issue is clearly demonstrated by
the two-patch model of Abrams & Wilson (2004). See Szabó & Meszéna (2006b) for a different
study, which emphasizes the role of localised vs. non-localised resource uptake in coexistence.

As the spatial distribution, and hence the utilization of the resources in the different patches, is
determined jointly by the tolerances and the migration behavior of the species, both the decreasing
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difference between species tolerances and increasing migration result in decreased niche segregation.
This, in turn, leads to a shrinking region of the external parameters that allow coexistence. Large
migration diminishes niche-segregation even in the case of large differences between the tolerances
of the species. On the other hand, the difference between the realized niches can be significant even
if the tolerance vectors are similar, provided, that the migration rate is small enough.

Such joint determination of the niche by physiological and ecological factors can be expected in
the case of functional niche segregation as well. For example, the preferred diet of a species is likely
to depend on what is available, instead of being determined by a fixed resource utilization function.
Therefore, the difference between the fundamental and the realized niches should be present in the
non-spatial situations as well.

It is straightforward to make a connection to the continuous case by considering an arbitrary
number of patches in a similar way (Szilágyi & Meszéna, in prep.). One can also consider the
continuous limit of a linear series of patches along an environmental gradient where the impact and
sensitivity niche vectors are functions of the continuous “niche variable” along the gradient (see
Mizera & Meszéna (2003)).

Chesson (2000a) provided a general theory of coexistence in spatially varying environments.
The type of coexistence that is studied here is explained by the effect of covariance between the
density and the growth rate. The two other effects in his theory, the “storage effect” and the “effect
of relative nonlinearity”, vanish in our case because of the simple linear-additive way of population
regulation.

The early predecessor of our study was Levene’s (1953) seminal paper about the population
genetical consequences of environmental heterogeneity. He demonstrated that spatial heterogeneity
can maintain genetic polymorphism. The way of regulation was the essential issue: Polimorphysm
can be maintained only in case of separate regulation in the various habitats (Christiansen 1975).
The analogous problem with functional niche segregation was studied by Christiansen & Loeschcke
(1980, 1987). These investigations assumed random mating, which precluded emergence of species
diversity.

Adaptive dynamics introduced a significant simplification by separating the study of frequency
dependence from the complications of diploid genetics. In clonal models it is clear that the diversity-
maintaining effect of niche segregation may lead to evolutionary branching, if the negative frequency-
dependence is strong enough. Branching evolution in the Lotka-Volterra model was demonstrated
already in Metz et al. (1996). Following Meszéna et al. (1997), here we showed that in a two patch
environment evolutionary branching can be initiated either by decreasing the migration rate between
patches or by increasing the difference between them. The first one is reminiscent of allopatric
speciation, initiated by a newly emerging migration barrier. The second one is a clonal equivalent
of parapatric speciation, when no migration barrier emerges. In genetic modeling, Dieckmann &
Doebeli (1999) demonstrated the possibility of adaptive speciation; Doebeli & Dieckmann (2003)
dealt with the case of environmental gradient. While a similar analysis is still to be done for the
two-patch case, based on the already existing results, we expect the adaptive dynamical results to
be indicative for the possibility of the adaptive parapatric and allopatric speciation.

If arrested gene flow were a prerequisite of speciation, parapatric speciation would be just as
impossible as the sympatric one. In the context of adaptive speciation, however, the sympatric
(based on functional niche segregation), the parapatric and the allopatric modes of speciation are
on equal footing: all of them are adaptations to different ways of niche segregations. This way we
hope to find a biologically plausibile unifying concept for all speciation modes.
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Appendix

Derivation of the analytic formulas

for the niche vectors

Supplementary material for Szilágyi & Meszéna: Two-patch model
of spatial niche segregation

The dynamics of species i in our model is described by the equation

d

dt
ni = M ini, (A1)

where ni = (niA, niB) is the abundance vector of species i and

M i =

(
r0
iA − αIA − µ µ

µ r0
iB − αIB − µ

)

(A2)

is the dynamical matrix;

IX =
∑

i

niX (A3)

for X = A, B are the regulating variables collected into the vector I.
The 2 × 2 symmetrical dynamical matrix1 M i has two real eigenvalues, the leading/larger one

(̺+
i ), which is the growth rate of species i, and the smaller one (̺−i ). The corresponding eigenvectors

(w+
i and w−

i ) satisfy
M iw

+
i = ̺+

i w+
i and M iw

−

i = ̺−i w−

i . (A4)

Symmetry of the dynamical matrix implies that the two eigenvectors are orthogonal:

w+
i · w−

i = 0. (A5)

We assume normalization:

w+
i · w+

i = 1

w−

i · w−

i = 1.
(A6)

One can express the abundance vector ni with the distribution vector pi:

ni = nipi, (A7)

where ni is the total number of individuals of species i and pi1 + pi2 = 1. In equilibrium the
abundance vector is proportional to w+

i (Caswell, 2001), so

pi = Qw+
i , (A8)

where Q is a factor of proportionality. We can express the eigenvectors and distribution vectors of
species i with the number of individuals in the patches:

w+
i =





niA√
n2

iA
+n2

iB

niB√
n2

iA
+n2

iB



 w−

i =





−niB√
n2

iA
+n2

iB

niA√
n2

iA
+n2

iB



 pi =

( niA

niA+niB
niB

niA+niB

)

. (A9)

1In this section we denote the vectors with boldface lowercase letters, the matrices boldface block letters (expected
the impact and sensitivity niche vectors, what we denote with C and S, respectively).
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In line with the perturbation approach in defining the niche vectors (Section 2 of the main text),
one has to determine how the growth rate and the population distribution of the ith species vary
with a small variation dM i of the dynamical matrix M i. This derivation is performed in the next
section of the current Appendix with the following result. The change of the growth rate is

dri = d̺+
i = w+

i dM iw
+
i (A10)

(see also Caswell, 2001), while the change of the distribution vector pi is

dpi = Ai dM i pi, (A11)

where

Ai =
(w−

i − U−

U+ w+
i ) ◦ w−

i

∆̺i

. (A12)

∆̺i = ̺+
i − ̺−i is the difference between the eigenvalues. ’◦’ denotes the diadic product. The

notations U+ = w+
i1 + w+

i2 and U− = w−

i1 + w−

i2 were used. After some computation, with use of eq.
(A9), one gets

Ai =
1

∆̺i

1

niA + niB

(
niB −niA

−niB niA

)

. (A13)

We express the variation of the dynamical matrix with the variation of the regulating variables,
as

dM i = −T idI. (A14)

The linear operator T i makes a 2×2 matrix from a 2-vector, so this is a 2×2×2 matrix (“tensor”).
Instead of complicating the notation by attempting full precision, we will rely on the common sense
of the Reader not to confuse the three indexes. The ’−’ sign is introduced for consistence of the
definition of the impact niche vector.

To derive the sensitivity-niche vectors we start from the definition:

dri = d̺+
i = −SidI. (A15)

Substituting eq. (A14) into eq. (A10) leads to

dri = −w+
i T iw

+
i dI. (A16)

Comparison of eqs. (A15) and (A16) implies, that

Si = w+
i T iw

+
i . (A17)

To compute the sensitivity vector of species i, keep in mind, that only the M11 component of
the dynamical matrix depends in I1, and only the M22 depends on I2 (see eq. (A2))2. Then:

T
i
w+

i = α

(
wi1 0
0 wi2

)

=
α

√

n2
iA + n2

iB

(
niA 0
0 niB

)

. (A18)

Consequently:

Si =
α

n2
iA + n2

iB

(
n2

iA

n2
iB

)

. (A19)

The perturbation of the impact vector comes from differentiating eq. (A7):

dI =
∑

i

dni =
∑

i

dnipi +
∑

i

nidpi (A20)

2In the parlance of indices, T i is not zero if all there indices are the same, in which case the value is α. (Ti,111 =
Ti,222 = α, in other cases is zero.)
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(eq. (A3) was used). Substituting eqs. (A11) and (A14) into the last term, leads to

B
︷ ︸︸ ︷
[

1 +
∑

i

niAiT ipi

]

dI =
∑

i

pidni. (A21)

where 1 is the unite matrix; the 2 × 2 matrix in the square bracket is denoted by B.
Then, the impact vector can be expressed, as

Ci =
dI

dni

= B−1pi. (A22)

Similarly to eq. (A18),

T
i
pi = α

(
pi1 0
0 pi2

)

=
α

niA + niB

(
niA 0
0 niB

)

. (A23)

From here and from eq. (A13), one can arrive to

B =

(
G + 1 −G
−G G + 1

)

, (A24)

where
G =

∑

i

α

∆̺i

niAniB

niA + niB

. (A25)

To compute the impact niche vector, we has to determine the inverse of B:

B−1 =
1

2G + 1

(
G + 1 G

G G + 1

)

. (A26)

Eqs. (A9), (A22)) and (A26) lead to

Ci = B−1pi =
1

2G + 1

(
G + niA

niA+niB

G + niB

niA+niB

)

. (A27)

Derivation of the perturbation equations (A10) and (A11)

Here we investigate how the growth rate (i.e., the larger eigenvalue) and the equilibrium distribution
p (the corresponding eigenvector normalized such, that its elements sum to 1) change under a
perturbation of matrix M . 3

dM denotes the perturbation of the matrix, M ’=M+dM is the perturbed one. Similar nota-
tion applies to the other quantities.

The eigenvalue equations for the unperturbed and the perturbed matrices are

Mp = ̺+p,

M ′p′ = ̺′+p′.
(A28)

To compute the correction of the leading eigenvalue and distribution vector at first, we ex-
press the distribution vector of the perturbed system in the terms of the normed eigenvectors of
unperturbed system with the coefficients4 c+, c−:

p′ = c+w+ + c−w−. (A29)

So, eigenvector equation of the perturbed system is

(M + dM) (c+w+ + c−w−) = ̺′+(c+w+ + c−w−). (A30)

3In this subsection we omit the species’ index i.
4It’s always possible when w

+ and w
− are not parallel.
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Perturbation of the leading eigenvalue

Multiplying equation (A30) with w+ from left, using the orthogonality relation (A5) and the norm
relations (A6), after some rearrangement we get

c+(̺′+ − ̺+) = c+w+dMw+ + c−w+dMw−. (A31)

Using that the unperturbed quantities are ̺+ and w+, write ̺′+, c+ and c− in an expansion series
as:

̺′+ = ̺+ + d̺+ + . . . ; c+ = Q + dc+ + . . . ; c− = 0 + dc− + . . . (A32)

The first terms represent the unperturbed system. The second terms are the changes coming from
the perturbation; there are in the order of w+dMw+. The higher terms are smaller and we neglect
them.

Putting the first two terms of the series into eq. (A31) and neglecting the higher order terms
leads to

d̺+ = w+dMw+, (A33)

as we claimed in eq. (A10).

Perturbation of the distribution vector

Multiplying eq. (A30) with w− from left, using eqs. (A5) and (A6) after some rearrangement we
get:

c−(̺′+ − ̺−) = c+w−dMw+ + c−w−dMw−. (A34)

After putting the first two terms of eq. (A32) into the equation above, and neglecting the higher
order terms we get

dc− =
w−dMp

∆̺
. (A35)

The first order correct form of the perturbed distribution vector is

p′ = p + dc+w+ + dc−w−.

Combining this with the constraint

p′1 + p′2 = p1 + p2 = 1

leads to

dc+ = −U−

U+
dc− (A36)

(recall, that U+ = w+
i1 + w+

i2 and U− = w−

i1 + w−

i2). Then, the correction for the distribution vector
is

dp = p′ − p = dc+w+ + dc−w− =

(

w− − U−

U+
w+

)

dc− =

=

(

w− − U−

U+
w+

)
w−dMp

∆̺
=

(

w− − U−

U+ w+
)

◦ w−

∆̺
dMp, (A37)

as stated in eqs. (A11-A12).
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