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Abstract We develop the theory of limiting similarity and niche for struc-
tured populations with finite number of individual states (i-state). In line with a
previously published theory for unstructured populations, the niche of a species
is specified by the impact and sensitivity niche vectors. They describe the pop-
ulation’s impact on and sensitivity towards the variables involved in the popula-
tion regulation. Robust coexistence requires sufficient segregation of the impact,
as well as of the sensitivity niche vectors. Connection between the population-
level impact and sensitivity and the impact/sensitivity of the specific i-states
is developed. Each i-state contributes to the impact of the population pro-
portional to its frequency in the population. Sensitivity of the population is
composed of the sensitivity of the rates of demographic transitions, weighted by
the frequency and by the reproductive value of the initial and final i-states of the
transition, respectively. Coexistence in a multi-patch environment is studied.
This analysis is interpreted as spatial niche segregation.
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1 Introduction

Niche theory (Hutchinson, 1978) plays a central role in community ecology (Lei-
bold, 1995). The underlying “Gause’s principle” (Gause, 1934) has an axiomatic
status (cf. Hardin, 1960). It mandates that species living together must differ to
avoid competitive exclusion. This differentiation is considered as the segregation
of the niches of the coexisting species (cf. Case, 2000, p. 368).

The nature and extent of the necessary segregation are of long-term interest.
On the theory side MacArthur and Levins (1967); May and MacArthur (1972);
May (1973, 1974); Vandermeer (1972, 1975); Abrams (1975) are the classic stud-
ies on limiting similarity; Abrams (1983, 1988); Chesson (2000b); Schwilk and
Ackerly (2005); Abrams et al. (2008) are more recent ones. Stubbs and Wil-
son (2004); York (2007); Emery (2007) are examples from the vast empirical
literature.

Our background study is Meszéna et al. (2006). It proved, that increas-
ing similarity between the populations makes their coexistence less likely, more
sensitive to external perturbations (see also Szabó and Meszéna, 2006; Barabás
and Meszéna, submitted). The main limitation of this formalism was that it
considered the populations to be homogeneous. In reality, individuals may be-
long to different states according to their age, size, developmental/physiological
state or location. Conspecific individuals in different developmental states often
assume different ecological roles, making the notion of the niche of a structured
population non-trivial.

Spatial structure has a pronounced importance for niche theory also. Liv-
ing in different habitats, under different environmental conditions, eliminates
competitive exclusion, just like if they were consuming different resources, or
differ in ecological function in any other way. These two essential ways of niche
segregation will be referred to as habitat and functional segregation (cf. the
“scenopoetic” and the “bionomic” niche axes of Hutchinson, 1978, p. 159). As
different habitats are located at different places, description of a habitat-type
niche segregation, unlike a functional one, necessitates to take into account the
spatial structure of the populations in a heterogeneous environment.

Fortunately, there is a general mathematical way of handling any type of
population structure. While the demographic parameters tend to differ in the
different states, the long-term behavior of the population can be described by
a single rate of increase, the leading eigenvalue of the dynamical matrix (Metz
and Diekmann, 1986; Metz et al., 1992; Caswell, 2001). In this paper we estab-
lish niche theory of structured populations by connecting the population-level
niche description to the description of the individual states. We will assume ir-
reducibility, i.e. any individual states are reachable from any others. The more
special case of spatial structure will receive special attention.

Section 2 develops the theory in general as well as for the spatial case. Section
3 studies the example case of a linear chain of habitats, as a model for niche
segregation along an environmental gradient.
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2 Theory

2.1 Limiting similarity for unstructured populations

In this subsection we recapitulate the theory of limiting similarity for unstruc-
tured populations form Meszéna et al. (2006).

First we note that an arbitrary coalition of competing populations is able to
coexist if their parameters are fine-tuned to nullify their fitness-differences. The
real question is whether the coexistence exists without this fine-tuning, i.e., for
a wide range of parameters. We will asses this “robustness” of coexistence by
introducing extra mortalities, acting upon each species separately. Robustness
of coexistence will be measured by the range of extra mortalities that allow the
coalition to coexist. If populations coexist only because their fitness-difference
happens to be zero, such coexistence disappears when some of them experience
an arbitrarily small additional mortality.

We will study coexistence of L species in a stable equilibrium point of their
combined dynamics. The ith species is distinguished by the superscript (i). As
a matter of definition, we assume that all interactions between the individuals
(including the interference types) are channeled through D “regulating vari-
ables” collected into the D dimensional vector I. As the population growth
rates are determined by the vector I, the equilibrium equation for species i can
be written as

r(i)
(

I(n(1), n(2), . . . , n(L))
)

− ∆(i) = 0 (i = 1, 2, . . . , L), (1)

where r(i) and n(i) are the growth rate and the density of species i, respectively.
The term ∆(i) represents the “extra” mortality acts on species i, their negative
values correspond to decreased mortalities. (For sake of simplicity we take
into account only fix point dynamics.) The coexistence is considered robust
if a fixed point exists and remains in the positive range for a wide range of
∆(i)s. Therefore “robustness” is proportional to the volume of ∆(i)s that allows
coexistence (cf. “coexistence bandwidth”, Armstrong (1976); Abrams and Holt
(2002)).

The system (1) consists of L equations for D unknowns. Generically, it can
be solved only if L ≤ D. This “discrete” version of the competitive exclusion
principle (MacArthur and Levins, 1964; Rescigno and Richardson, 1965; Levin,
1970; Armstrong and McGehee, 1980; Heino et al., 1997) shows the connection
between coexistence and regulation. Below we demonstrate that robustness
of coexistence requires sufficient difference between the populations in their
relationship to the regulating variables.

Differentially, the interaction between the ith species and the regulating
variables is characterized by two vectors, C(i) and S(i) that will be referred to
as impact and sensitivity niche vectors of that species:

C
(i)
k =

∂Ik

∂n(i)
, S

(i)
k = −∂r(i)

∂Ik

, (i = 1, 2, . . . , L; k = 1, 2, . . . ,D). (2)

The quantities C
(i)
k and S

(i)
k measure the population’s impact on and sensitivity

towards the kth regulating factor, respectively. The sign convention for the
sensitivity corresponds to the case when the regulating variables describe the
deterioration of the environment, e.g. the exploitation of the resources.
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One can determine the sensitivity of the equilibrium population sizes toward
the additional mortalities by implicit differentiation:

∂n(i)

∂∆(j)
= −

L
∑

j=1

(a−1)ij∆
(j) = − 1

J

L
∑

j=1

adj(a)ij∆
(j), (3)

where

aij = − ∂r(i)

∂n(j)
=

D
∑

k=1

S
(i)
k C

(j)
k = S(i) · C(j) (4)

is the community/competition matrix, adj(a) denotes its adjunct matrix. The
determinant

J = det(aij) (5)

measures the strength of the community-level regulation.
If |J | is small, i.e. if the community is weakly regulated, Eq. (3) predicts

strong dependence of the population sizes on the extra mortalities. In this case
a small additional mortality could drive some of the populations into extinction.
Therefore, the coexistence is not robust (see Meszéna et al., 2006, for the precise,
probabilistic treatment). As one can see from Eq. (4), if the sensitivity niche
vectors of two different species are the same, then the corresponding two rows
of the community matrix are the same and J = 0. This situation is approached
when the sensitivity niche vectors are similar, leading to small |J | and weak
regulation. Analogous argument holds for the impact niches and for the columns
of the matrix.

More quantitatively, Meszéna et al. (2006) proves that

|J | ≤ VS · VC , (6)

where VS and VC denote the L dimensional volume of the parallelepiped spanned
by the C(i) and S(i) vectors, respectively. These volumes are the measures of
the dissimilarity (in the linear sense) of the sensitivity/impact niche vectors.

To sum it up, robust coexistence requires sufficient difference between the
impact, as well as between the sensitivity niche vectors of the species. Di-
minishing difference between the niche vectors leads diminishing likelihood of
coexistence.

2.2 Continuous time matrix dynamics

We extend the ideas presented in the previous subsection for structured popula-
tions. To simplify the formalism, we restrict our attention to a finite number of
individual states. It is assumed that individuals belongs to one of the s different
individual states (i-state, Metz and Diekmann, 1986). Then the s-dimensional
vector n specifies the state of the population (p-state). Its generic element nl

is the number of individuals belonging to the i-state l. One can also write

n = ñp, (7)

where ñ =
∑s

l=1 nl is the total population size and vector p = n/ñ describes
the population structure;

∑s

l=1 pl = 1.
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While such models often formulized in discrete time, we will apply a continu-
ous time description because of its simpler-smoother behavior. The continuous-
time population dynamics is described by the matrix differential equation

dn

dt
= Mn, (8)

where the s × s matrix M is the dynamical matrix. The eigenvalues will be
denoted by ̺j (j = 1, 2, . . . , s); the corresponding right and left eigenvectors
by wj and vj , respectively. Analogously to the discrete-time theory (Caswell,
2001; Hastings and Botsford, 2006a,b; Smith et al., 2004), the long-term growth
rate of the population is the dominant eigenvalue of the dynamical matrix.

In discrete time all elements of the dynamical matrix are nonnegative. To-
gether with the usual assumption of irreducibility, the Perron-Frobenius theorem
guaranties the necessary properties for biological interpretation: The leading
eigenvalue is simple and positive; the leading eigenvectors are positive. In the
continuous case both death and state transitions contribute negative terms to
a diagonal element. Therefore, only the off-diagonal elements must be non-
negative. From the assumed irreducibility again, the growth rate ̺1 simple and
real, but not necessarily positive; the eigenvectors w1 and v1 remain positive
(see Appendix A for the proof).

Positivity of w1 allows us to normalize it as
∑s

l=1 w1l = 1. From that,

p = w1. (9)

The left eigenvectors are normalized to satify the orthogonality relation

wivj = δjk. (10)

We will use the notation v = v1, its generic element is vl = v1l.

2.3 Limiting similarity for structured populations

The overall growth rate of the population can be calculated from the matrix
elements, i.e. from the demographic parameters of the i-states. In the same
spirit, we intend to determine the overall impact and sensitivity niche vectors
of structured populations based on the impact and sensitivity parameters of the
i-states. We demonstrate that this overall niche description does provide the
limiting similarity conclusion in line with the unstructured case.

Instead of Eq. (1), the equilibrium equation can be written as

dn(i)

dt
=

[

M (i)
(

I
(

n(1),n(2), . . . ,n(L)
))

− ∆(i)
1

]

n(i) = 0, (11)

where 1 denotes the identity matrix.
Note the analogy to the chemostat. The rate of excess mortality ∆(i) can

also be seen as a (species-dependent!) removal, or dilution, rate. This way our
equilibrium population can be seen as an exponentially growing one with the
tunable growth rate ∆(i). Accordingly, the equilibrium p-state vector of species
i is an eigenvector of its dynamical matrix M (i) with the (leading) eigenvalue
∆(i). As the equilibrium is affected by the dilution rates, changing ∆(i)s result
in perturbation of the population structures. Importantly, the dynamical matrix
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~n=const.

∆ increase

n2

1n

Figure 1: Dimension reduction. The two axes represents n
(i)
1 and n

(i)
2 , i.e. the

number of individuals in two i-states of one of the species. Under changing
one of the excess mortalities the equilibrium point moves on a curve. (In the
figure the species’ own mortality is tuned, so the curve follows the fate of that
population until extinction.) The curve can be parameterized also by the total
population size ñ(i). The ñ(i) = constant points lie on a straight line of −450

direction.

should be evaluated at the equilibrium values of the regulating variables affected
by the dilution rate.

Our first job is to build the connection between this L × s dimensional
dynamical system and the L dimensional case of unstructured populations. We
are interested in olny whether the populations can survive the extra mortalities.
From this point of view ñ(i)s are the only relevant parameters. When the L
dilution rates are tuned, the equilibrium point of dynamics (11) moves on an
L dimensional submanifold of the L × s dimensional state space (Fig. 1). This
manifold can be parameterized also by the L equilibrium values of the total
population sizes ñ(1), ñ(2), . . . , ñ(L).

With this change of the variables, one can consider the equilibrium I as a
function of the ñ(i)s:

I = Î
(

ñ(1), ñ(2), . . . , ñ(L)
)

. (12)

Moreover, the growth rate (the dominant eigenvalue of the dynamical matrix)
can be written as a function of the regulating variables:

r(i) = r(i)(I). (13)

Eqs. (12-13) establishes a description that is isomorphic to Eq. (1).
A note of precision is needed here. The equilibrium point of dynamics (11) at

a given dilution rate is not necessarily unique. However as we consider a stable
fixed point, implicit function theorem guaranties that the equilibrium point is
locally unique and a smooth function of ∆(i)s. We assume that the local map
(∆(1), . . . ,∆(L)) → (ñ(1), . . . , ñ(L)) is invertible. (Recall from Section 2.1, that
the non-invertibility would mean structural instability of coexistence.) This
inversion allows us to locally parameterize the manifold by the total population
sizes, leading also to the locally unique mapping (12).
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Based on this reduction of the number of variables, now we build the quan-
titative connection between the robustness analysis of structured and unstruc-
tured descriptions.

We begin the work with the sensitivity side: How does the population growth
rate depend on the regulating variables? On the i-state level our starting point
is the sensitivity of the elementary demographic rates which is considered to be
known from the model definition. It can be described by the linear operator

T
(i)
jkm

dM
(i)
jk = −

D
∑

m=1

T
(i)
jkmdIm (j, k = 1, 2, . . . , s). (14)

where dM
(i)
jk is the change of the population matrix of species ith under the

perturbation dIm of the regulating variables. The operator can be determined
via differentiating the map M (i)(I), which is given by the model definition.
Like in Eq. (2), the minus sign corresponds to the depletive interpretation of
the regulating variables.

The change of the population growth rate is determined by the perturbation
of the dynamical matrix as (Caswell, 2001, Appendix B)

dr(i) =
s

∑

j,k=1

v
(i)
j dM

(i)
jk p

(i)
k . (15)

Obviously, the perturbation of the k → j rate contributes to the change of
the population growth rate proportional to the frequency pk of initial state k
and to the reproductive value vj of the final state j.

Comparison of Eq. (15) with the definition (2) leads to the identification

D
∑

m=1

S(i)
m dIm =

s
∑

j,k=1

D
∑

m=1

v
(i)
j T

(i)
jkmdIm.p

(i)
k (16)

Then, the sensitivity vector can be written as

S(i)
m =

s
∑

j,k=1

v
(i)
j T

(i)
jkmp

(i)
k (m = 1, 2, . . . ,D). (17)

Interpretation is inherited from the perturbation result (15). Sensitivity of
a population towards the regulating variables is composed of the sensitivities of
its elementary rates. Each rate is weighted by the frequency of the initial state
as well as by the reproductive value of the final state.

Now we turn our attention to determine the impact niche vectors. Here
the starting point is: How does the change of the regulating variables receive
contribution from the perturbation of the number of individuals in a given i-
state of a given population? It is described by the D × s matrix F via the
relation

dIm =

L
∑

i=1

s
∑

j=1

F
(i)
mjdn

(i)
j (m = 1, 2, . . . ,D). (18)

Matrix F is considered to be directly calculable from the specific model.
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In line with the definition of the impact niche vector, we want to express the
perturbation dI solely by the total population sizes dñ(i), as

dIm =

L
∑

i=1

C(i)
m dñ(i) (m = 1, 2, . . . ,D). (19)

Naively, one could expect that the vector

C̃(i)
m =

s
∑

j=1

F
(i)
mjp

(i)
j (m = 1, 2, . . . ,D) (20)

plays the role of C(i) (cf. Eq. (7)). Impacts of each state contribute to the
impact of the population proportional to the frequency of that state. This
would be the case if the population structures p(i) were unperturbed. We will

refer to C̃
(i)

as the uncorrected impact vector of species i.
However the equilibrium population structures receive perturbation also un-

der the change of the dilution rates ∆(i). As Appendix B demonstrates, the
change of the equilibrium population structure p is

dp
(i)
j =

s
∑

k,l=1

A
(i)
jk dM

(i)
kl p

(i)
l (j = 1, 2, . . . , s), (21)

where

A(i) =

s
∑

j 6=1

(w
(i)
j − Uj

(i)p(i)) ◦ v
(i)
j

̺
(i)
1 − ̺

(i)
j

(22)

is an s× s matrix describing the dependence of the population structure on the
perturbations of the dynamical matrix. Matrix A is finite provided that the
dynamical matrix is primitive. The sum runs over the non-dominant eigenval-
ues/vectors, ◦ denotes dyadic product and

U
(i)
j =

s
∑

k=1

w
(i)
jk (j = 2, . . . , s). (23)

(Note that U
(i)
1 = 1 by the normalization of w1. Similar normalization for

U
(i)
j , j 6= 1 might not be possible, as these quantities are allowed to be zero.)

Existence of A(i) relies on the fact that the dominance of eigenvalue ̺1 (cf.

Appendix A) implies ̺
(i)
1 > ̺

(i)
j for all j > 1.

Combination of Eqs. (14) and (21) leads to

dp
(i)
j = −

s
∑

k,l=1

D
∑

m=1

A
(i)
jk T

(i)
klmdImp

(i)
l (j = 1, 2, . . . , s). (24)

The perturbation of the population structure comes from the change of the
total population size and from the change of the distribution. The total deriva-

tive of n
(i)
j = ñ(i)p

(i)
j gives

dn
(i)
j = dñ(i)p

(i)
j + ñ(i)dp

(i)
j (j = 1, 2, . . . , s). (25)
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From Eqs. (18), (24) and (25) we get

(

δmn + Hmn

)

dIn =

L
∑

i=1

s
∑

j=1

dñ(i)F
(i)
mjp

(i)
j (m = 1, 2, . . . ,D), (26)

where the D × D matrix H has the form

Hmn =

L
∑

i=1

s
∑

j,k,l=1

ñ(i)F
(i)
mjA

(i)
jk T

(i)
klnp

(i)
l (m,n = 1, 2, . . . ,D). (27)

It characterizes the consequences of the perturbed population structure on
the regulation of the community. Note that matrix H is a property of the whole
ecosystem. Therefore, it is the same for all species involved.

The impact niche vector is an immediate consequence of Eq. (26):

C(i) =
∂I

∂n(i)
= (1 + H)

−1
F (i)p(i) = (1 + H)

−1
C̃

(i)
. (28)

Note that

VC =
1

det (1 + H)
V

C̃
. (29)

Recall that matrix A and therefore matrix H is finite for primitive dy-
namical matrices. That is, the linear dissimilarity of the impact niche vectors
is proportional to the dissimilarity of the uncorrected impact vectors, with a
nonzero constant of proportionality. The two impact niche vectors became lin-
early dependent under the same circumstances. Therefore, the empirically more
accessible uncorrected vectors could be a good proxy for the corrected ones.

Formulae (17) and (28) establish the connection between the population-
level niche vectors and the detailed (i-state-level) description of the structured
population. With the exception of the correction represented by matrix H,
this relationships are intuitively transparent. The dimension reduction proce-
dure depicted in Fig. 1 ensures that the calculated impact and sensitivity niche
vectors obey the coexistence theory described in Section 2.1. Therefore we suc-
ceeded in establishing the theory of limiting similarity and niche sensu Meszéna
et al. (2006).

3 Spatial structure: the minimal model

3.1 Analytic results

The theory of Section 2.3 applies for any kind of structured populations with
finite i-states. However, because of the ecological importance of spatial dis-
tribution, it is worth to consider the minimal model of spatiality as a special
case, when the different locations are the only source of population structure as
well as of species diversity. In this subsection we concentrate on the analytic
consequences of these simplifications.

We assume that the investigated populations live in a metapopulation envi-
ronment of s habitats, or patches, in which the environmental conditions may
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differ. The individuals are equivalent except their locations. Moreover, we as-
sume that population regulation operates locally. In this case, the regulating
variables (i.e., the resource exploitations) in the different patches must be con-
sidered as different variables (Levin, 1974), each of them has a contribution to
the metapopulation-level regulation. There is a single regulating variable in
each patch. As the total number of them is D = s, at most s species can coexist
in a stable fixed point of the population dynamics.

The state transitions correspond to migration between habitats. These can

be specified by a migration matrix for each population. Its generic element µ
(i)
jk

(j, k = 1, 2, . . . , s) represents the rate of migration of species i from patch k to
patch j. Then the elements of the dynamical matrix are

m
(i)
jk =

{

r
(i)
j −

∑s

l=1 µ
(i)
lj if j = k

µ
(i)
jk if j 6= k

. (30)

It is assumed that any patch is reachable from any other via consecutive
migration steps. Irreducibility of the population matrix is ensured in this case.

For simplicity we further assume that resource exploitation is proportional
to the total number of individuals in the respective patch. Without losing
generality, we choose the constant of proportionality to be 1. From that the
regulating variable in habitat j is

Ij =
∑

i

n
(i)
j , (31)

where n
(i)
j denotes the population size of species i in patch j.

The ecological tolerance of species i towards the environmental conditions

of habitat j is described by the local intrinsic growth rate r
(i)
0j in the respective

patch. The actual local growth rate r
(i)
j is assumed to be negatively affected by

the resource exploitation Ij in patch j:

r
(i)
j = r

(i)
0j − αIj (32)

where α characterizes the strength of regulation.
The reduction of generality allows us to simplify considerably the formulae

developed in the previous section. The matrix F (i) (cf. Eq. (18)) becomes the
identity matrix

F
(i)
jk = δjk, (33)

as a consequence of Eq. (31). Comparison of Eq. (30) with Eq. (32) shows
that only the element Mmm of the dynamical matrix depends on the regulating
variable Im. Therefore (see Eq. (14)),

T
(i)
mnk = −αδmnδnk. (34)

Then, Eq. (17) reduces to a simplified expression for the sensitivity niche
vector:
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S(i) = α













v
(i)
1 p

(i)
1

v
(i)
2 p

(i)
2

...

v
(i)
s p

(i)
s













. (35)

The sensitivity towards the regulating factor in a given patch is the product
of the local density and the reproductive value of the individuals in that locality.
The growth rate of the population is more sensitive to the exploitation of that
patches where a larger fraction of the population lives as well as to the ones
where the possibilities to contribute to the next generations is better.

By Eq. (33), the uncorrected impact vector is simply

C̃
(i)

= p(i), (36)

while the corrected one, from Eq. (28) is

C(i) = (1 + H)
−1

p(i). (37)

That is, apart from the correction related to the perturbation of the popula-
tion structure, the local impact of a population is proportional to ration of the
population living in the given location.

More detailed analysis together with numerical studies are presented in
Szilágyi and Meszéna (in press) for the special case of two patches (see also
Meszéna et al., 1997).

3.2 Numerical studies

We perform numerical analysis for a linearly ordered chain of patches. Migration
is possible between the neighboring habitats. The migration rate from patch j
to patch j ± 1 is µj±1,j uniformly for all species. The dynamical matrix reads
as

M (i) =













r
(i)
1 − µ21 µ12 . . . 0

µ21 r
(i)
2 − µ12 − µ32 . . . 0

...
...

. . .
...

0 0 µs;s−1 r
(i)
s − µs−1;s













. (38)

If all the µ’s are nonzero, the matrix M (i) is irreducible, as required.
We assume monotonically changing environmental conditions along the chain

of s habitats. Coexistence of L = s species will be investigated. Species i is
optimized to the conditions in patch i. We specify the intrinsic local growth
rate of species i in patch j as a Gaussian function

r
(i)
0j =

A√
2πσ

e−
(i−j)2

2σ2 , (39)

where A is a scale-factor.
An asymmetry to migration is introduced. Imagine, for instance, migration

of flying insects in an environment with a dominant wind direction from the
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left to the right. While all migration rates to the right are higher, the ones
to the left are lower that a reference rate µ by a factor of c (µj;j+1 = cµ and
µj+1;j = µ/c for j = 1, . . . , s − 1).

The 4th order Runge-Kutta method was used to study the dynamics (11).
The equilibrium densities were determined by numerical integration until con-
vergence. We have never found an internal attractor other than the unique fixed
point. As a consequence, at most so many populations can coexist, as many
patches are present.

At the equilibrium point, each eigenvalue and the corresponding left and
right eigenvectors of the dynamical matrix for all populations were determined
numerically. Then, the theory of Section 3.1 provided the impact and sensitivity
niche vectors of the coexisting species. Finally, the regulation strength J of the
community was calculated via Eqs. (4-5).

The theoretical prediction about the robustness of coexistence provided by
the regulation strength was compared to the numerically determined robustness.
To this end, the equilibrium was studied as a function of the extra mortalities
with the constraint

L
∑

i=1

∆(i) = 0. (40)

That is, the perturbations affecting all populations identically (i.e., not in-
troducing advantage/disadvantage) were disregarded. The combination of the
∆(1),∆(2), . . . ,∆(L) values, that allows coexistence fills an L − 1 dimensional
volume (the coexistence volume), which is the subset of the simplex defined
by Eq. (40). The volume of the simplex is proportional to the robustness of
coexistence.

Fig. 2 depicts the population and niche vectors for s = 3. According to (39)
Species 1, 2 and 3 have the highest fitness in Patch 1, 2 and 3, respectively.
The migration difference between the two directions redistribute the density
compared to the symmetric migration. This asymmetry in migration makes
density differences between the patches smaller for Species 1 and larger for
Species 3 than in the symmetric migration case.

The reproductive value of Species 1 decreases monotonically and rapidly
in the direction of large migration. For Species 3, it changes in the opposite
way, but this change is less pronounced. The reason is that an individual of
Species 3 in Patch 2, or in Patch 1 has a high chance to move into a better
patch. Therefore an individual in a suboptimal patch has a higher reproductive
value than in the case of symmetric migration. For Species 2, there is only a
small difference between the reproductive values in patch 1 (from where the
migration take individuals to the optimal patch) and in patch 2 (which is the
optimal patch).

As one expects, a species is most sensitive and has the highest sensitivity in
its own optimal patch. Recall, that sensitivity is the product of the frequency
and the reproductive value. For Species 1 and 3 both of these quantities have
a clear maximum in their respective optimal patch. For Species 2 the two
quantities changes from patch to patch in the opposite way. Consequently, the
sensitivity values of Species 2 are more even across the metapopulation, a kind
of more ’generalist’ behavior.
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Figure 2: Coexistence of three species in three patches with asymmetric migra-
tion. Each pane represents one of the species. In each patch the lengths of the
two upward-pointing arrows represent the population size and the reproductive
value of the species in the given patch. Similarly, downward-pointing arrows
represent the impact and sensitivity of the population towards the specific patch.
Parameters: A = 1/40; σ = 1; α = 10−3; µ = 0.05; c = 1.5.
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Fig. 3 presents the result of robustness analysis for s = 3 and for s = 5. The
coexistence volume is plotted as a function of the migration rate. The volume
spanned by the impact vectors as the volume of the sensitivity vectors and the
regulation strength J = det(a) are plotted also as a function of the migration
rate. In our simple case L = s then the regulation strength is simply the product
of the two volumes J = VC · VS . (Both of the average and the maximum of J
over the coexistence volume were determined and plotted, where different.)

For s = 3, the coexistence volume was determined via systematic screening
of the simplex. In case of more patches and species this procedure would require
immense computation. Instead, the more efficient Monte-Carlo integration was
applied for s = 5. That is, we tested coexistence at a large number of randomly
chosen points of the simplex. Measuring the probability of coexistence under
uniform distribution of the extra mortalities provided the coexistence volume.

Increased migration tends to equalize the distribution of each population
along the chain. This, in turn, makes the impact, as well as the sensitivity
niches of the species more similar, resulting in a decreasing strength of regulation
(see also Szilágyi and Meszéna, in press). This tendency predicts less robust
coexistence for increasing migration rate. It is confirmed by the also decreasing
coexistence volume.

Note the quite parallel decrease of the two (independently calculated) quan-
tities by more than two orders of magnitude during a ten-fold increase of the mi-
gration rate. While not plotted, the coexistence volume shrinks roughly isotrop-
ically. That is, we found no direction of perturbation for which the coexistence
is extremely sensitive, as compared to the other directions.

4 Discussion

Competitive exclusion and limiting similarity are unavoidable concepts of evo-
lutionary ecology. Here we contributed to their theory by extending the analysis
of Meszéna et al. (2006) for structured populations. By studying coexistence
of spatially structured populations we established the minimal model of spatial
niche segregation. Instead of using the phenomenological concept of resource
utilization, the background theory of Meszéna et al. (2006) describes the niche
of a species by the population’s impact on, and sensitivity towards the reg-
ulating variables. We developed the connection between the population-level
niche-description and the impact/sensitivity of the individual states.

We stress the generality of our approach. Limiting similarity was proposed
in the context of the competitive Lotka-Volterra model (MacArthur and Levins,
1967). Being a “strategic” model, it maintains little connection with the compli-
cacies of most of the ecological situations. However, expecting and not finding
a strict limit of similarity in other model studies caused disillusionment towards
limiting similarity (Maynard Smidth and Szathmáry, 1995; Rosenzweig, 1995).
Only a model-independent analysis can provide a firm answer to the question
whether limiting similarity and niche theory are proper guides of biological
though.

Early enthusiasm towards niche theory faded away partially because the false
expectation for easily reachable quantitative predictions did not materialize. We
are developing a longer, but more realistic route from first principles (cf. Van-
dermeer and Goldberg, 2003) to results of practical relevance. In some sense,
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Figure 3: The volume of coexistence, the strength of the regulation (determinant
J) and the volumes spanned by the C and S vectors as a function of the mi-
gration rate µ for three patches (upper pane) and for five patches (lower pane).
The parameters are the same, as in Fig. 2 expect σ = 1/2 for the five patches
case. An arbitrary scaling was applied on the volume curves. On the left pane
the average and the maximal volumes are the same with the precision of line
thickness. On the lower pane the C- and S-volumes (VC and VS) correspond to
the maximal regulation strength.



15 Limiting similarity and niche theory for structured populations

Meszéna et al. (2006) already provided the prediction by quantitatively con-
necting robustness of coexistence to decrease of interspecific competition. Here
we described the recipe to specify this relationship for an arbitrary structured
population. Still, even the specific model we discussed was a demonstration of
the concept than a model aiming for quantitative fidelity. As a next step, one
can apply our methodology for a tactical model of a specific ecological situation
and arrive to specific numerical results on the robustness of coexistence.

One source of our generality is the perturbation approach. Instead of search-
ing for a strict limit of similarity, we studied the gradual loss of robustness with
increasing similarity. This change of attitude was suggested first by Abrams
(1983) (“similarity-coexistence relationship”, see also May, 1973, p. 158); a
model-independent analysis was provided by Meszéna et al. (2006). We tested
robustness of coexistence via varying the extra mortalities ∆(i) (cf. coexistence
bandwidth, Armstrong (1976)).

Note that it was a nontrivial choice to apply the same mortality rate for each
i-state of a species. We wanted to concentrate on the single issue whether eco-
logical interactions through the regulating variables stabilize coexistence against
competitive exclusion. This ecological stabilizing feedback is distinguished from
the purely demographic stabilization of population structure. Because of the in-
teraction between the two types of stabilization, the distinction between them is
a matter of definition by some extent. The state-independent mortality does not
affect the population structures directly, only through the ecological feedback.
On the other hand, it directly influences the fitnesses of the populations. There-
fore, this kind of perturbation tests whether the ecological feedback eliminates
fitness differences robustly.

Obviously, robustness against the chosen type of perturbation does not guar-
antee robustness against other types of perturbations. In principle it is possible
that a strange interaction between ecology and demography could destabilize
a coexistence that our theory would allow to exist. (We are not aware of a
biologically realistic example.) The present analysis provides only a necessary
condition for robust coexistence when state that sufficient niche segregation is
required.

Another source of generality is the notion of regulating variables. Levin
(1970) demonstrated already that the (discrete) principle of competitive exclu-
sion (MacArthur and Levins, 1964; Rescigno and Richardson, 1965) can be gen-
eralized beyond resource competition by counting all quantities that behaves
like resource concentrations (see also Heino et al., 1997). Unfortunately, the
unifying nature of this idea did not receive the proper attention in community
ecology. Instead, a multitude of reasons, which invalidates the resource com-
petition theory, was investigated. In particular, interference competition was
considered in this vein (e.g. Schoener, 1976). Following Krebs (2001), we prefer
to use the term “regulating variables” for all variables involved in the regulating
feedback loop, because “limiting factors” often means external ecological con-
ditions, like temperatures, that are not density-dependent and, therefore, not
regulating. Note that the term “environmental feedback variable” is used with
the same meaning in a part of the literature (Metz and Diekmann, 1986; Diek-
mann et al., 1998, 2001, 2003). The prize for generality is that all interactions
between the individuals must be considered as mediated by the regulating vari-
ables. In case of interference competition, one has to introduce variables like
the experienced attack intensity. In case of apparent competition, mediated by
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a common predator, the predation pressure is the proper variable (see Leibold,
1995 for the comparable role of resources and predators in niche theory).

As competitive exclusion is avoided by diversification with respect to the
regulating variables, the set of theses variables is the proper generalization of
Hutchinson’s “niche space” (Meszéna et al., 2006). This “space” is either a
discrete set, when we are dealing with a finite number of regulating variables,
or a continuous entity, spanned by the “niche axes”. The canonical example for
the latter case is the seed-size continuum, partitioned by consumer populations.
Importantly, the niche axis is the seed-size and not the seed densities. The
latter ones are the (infinitely many) regulating variables.

In a heterogeneous environment, concentrations of the same resources at
different locations may behave as different regulating variables, allowing coex-
istence through spatial segregation (Levin, 1974, see Szabó and Meszéna, 2007
for the consequences of local vs. non-local operation of population regulation).
This way, the notion of regulating variables plays the role of the unifying concept
in the case a functional and habitat type niche segregation. As pointed out by
Levin (1974), the concentrations of a given kind of resource in different habitats
are different variables in the feedback loop. Therefore they should be counted
as different regulating variables. This way, both kinds of niche-segregation can
be considered as a segregation with respect to the regulating variables. Still, the
description of habitat-segregation is more complicated than the functional one
because it must involve handling the spatial structure of the populations. This
problem was solved here together with any other kinds of population structure.

When the nature of the niche space is understood, the next issue is the
specification of the niche of a given species within that space. Originally,
species’ niche was conceived as a subset (Hutchinson, 1957) of the niche space.
Later, it was made more precise by introducing the resource utilization func-
tion (MacArthur and Levins, 1967), describing the “fuzzy” nature of the subset.
Unfortunately, this function is entirely a phenomenological concept, for which
no unequivocal measuring instruction exists. Operationally, one has to study
two questions, instead of one (cf. Abrams, 1988; Goldberg, 1990): How does
resource availability depend on the population density? How does population
growth rate depend on resource availability? The niche theoretical relevance of
the two-way interaction was recognized by Leibold (1995). Meszéna et al. (2006)
introduced the differential measures of these relations, the impact and the sensi-
tivity vectors, as the proper representation that connects niche segregation and
coexistence in a precise and general way.

It is quite common, but not necessary, that individuals in different i-states
consume different resources. Therefore, the i-states, like the larva and the imago
of an insect, may have very different niches. Our theory provides a clear pre-
scription for constructing the niche description of the whole population from the
ones for the i-states. In particular, we developed the exact connection between
the population-level sensitivity niche vector and the sensitivity of the elementary
demographic rates. Let us phrase it for age structure and discrete time! The
sensitivity of the survival rate from age 4 to age 5 contributes to the population-
level sensitivity proportional to the fraction of individuals in the age-class 4 in
the equilibrium age-distribution and by the reproductive value of an individual
of age 5. The reproductive rate in age 4 contributes according to the frequency
of the 4-years-olds and to the reproductive value of a newborn. The very same
intuitive idea applies for any other types of population structure. In our spa-
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tial examples the i-state sensitivity was the same in each habitat. Then the
population sensitivity towards the regulating factor in a given patch was just
determined by the local density and reproductive value. (In case of symmet-
ric migration this dependence reduces to square local density, see Szilágyi and
Meszéna, in press.) The impact case is more involved. One must not consider
the state distribution as a fixed property of the population. As the different
states may be regulated differently, the population structure may become per-
turbed under a change of the population size. Moreover, the structures of the
coexisting populations mutually influence each other through competition. An
extra mortality of one of the species may perturb the state-distribution of all
of them. To be precise, one must take into account all of these interrelated
structure-perturbations when the environmental impact of a change in a popu-
lation size is calculated. This is the role of matrix H in Eq. (28). Note that
calculation of the sensitivity niche vectors was a direct application of the sen-
sitivity analysis by Caswell (2001). In contrast, determining the impact niche
vector required a fully different analysis, because we had to take care of the
effect of perturbation on the population structure. The procedure we applied is
a derivative of the perturbation theory widely used in quantum mechanics.

Empirical determination of the matrix H would be an immense task. Fortu-
nately, for the qualitative limiting similarity conclusion it is sufficient to consider
only the uncorrected version of the impact niche vectors (cf. Eq. (29)). It is just
the sum of the impacts of all states, weighted by the frequencies of the states
(Eq. (20)). No precision is lost this way. The true impact niche vectors, cor-
rected by using matrix H, were needed only to calculate the community matrix
(4). Fortunately, it is possible to determine in a more direct way through Eq.
(3) via experimentally applied extra mortality. Still, the consistency of niche
theory requires us to state clearly that the corrected impact vector plays the
prescribed role for structured populations.

In general, the number of regulating factors and the number of the i-states
are unrelated. However, in Section 3 we concentrated on the minimal model of
the situation when spatial heterogeneity was the sole source of species diversity.
Therefore we assumed a single regulating factor for each patches. Moreover,
we assumed no differences between the individuals other than spatial location.
Consequently, both the number of i-states and the number of the regulating
factors equaled to the number of patches, in this case.

Leibold (1995); Shugart (1998); Soberon (2007) distinguish between “Elto-
nian” and “Grinnelian” niche. The first one corresponds to the functional niche
in our terminology, or to the bionomic niche in Hutchinson’s parlance. The sec-
ond one is something like the habitat/scenopoetic niche, but usually discussed
outside the context of competitive exclusion principle, as an alternative name
for the tolerance range. Here we provided an integrated notion that firmly roots
both kinds of niche in competition/coexistence theory.

The model by Abrams and Wilson (2004) demonstrates clearly that habitat
niche cannot be equated with the environmental tolerance of the species for the
purpose of coexistence theory. In this two-patch model both species have the
higher fitness (i.e., lower R∗ value) at the same patch. Still, they may be able
to coexist if their mobility is different. If the locally inferior species has a lower
migration rate, then its better localization on the better patch may compensate
for its local inferiority. Then, the different spatial distribution of the two species
establishes a kind of niche segregation. It would be overlooked, if the ecological
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tolerance vector r0
i was considered as a descriptor of niche.

The environmental gradient (therefore, the scenopoetic niche axis of Hutchin-
son) can be considered as a limiting case of the linear chain of habitats. Techni-
cally, our analysis does not apply because of the infinitely many locations. Still,
we expect our conclusions to remain valid provided, that a finite spatial interval
is considered. The dynamical matrix would be replaced by a reaction-diffusion
operator with discrete spectrum (Shigesada and Kawasaki, 1997). Instead of the
right and left eigenvectors we would have eigenfunctions specifying population
distribution and the location-dependent reproductive value. The isolatedness of
the dominant eigenvalue guarantees the validity of the perturbation expansion.
See Durrett and Levin (1998) for a study of interspecific competition in such
context. Mizera et al. (in prep.) studies the possibilities of niche-segregation
along the gradient. Mizera and Meszéna (2003) analyses the possibility of evo-
lutionary branching in this ecology; see Doebeli and Dieckmann (2003) for the
corresponding speciation simulation.

Note that Diekmann et al. (1998, 2001) provided a measure theoretical for-
mulation for the theory of structured population that allows infinitely many
i-states. While not discussed here, we expect our theory to extend for their
more general formalism.

Modeling of coexistence maintained by spatial heterogeneity was initiated by
the seminal paper of Levene (1953), using population genetics context. Kisdi
and Geritz (1999); Geritz and Kisdi (2000) continued the evolutionary study of
Levene’s model by discussing emergence of reproductive isolation in this context.
Meszéna et al. (1997) investigated adaptive dynamics and evolutionary branch-
ing in a continuous-time two-pach model. Szilágyi and Meszéna (in press) com-
plemented this model by the impact/sensitivity niche description. They argued
that the symmetry between habitat and functional niche segregation translates
to a conceptual symmetry between allopatric and parapatric niche segregation.
The purely ecological study of heterogeneity-maintained coexistence was initi-
ated by Levin (1974); see Amarasekare (2003) for a recent review.

Chesson’s theory (Chesson, 2000b) suggests a deeper, unifying understand-
ing of coexistence. Necessarily, any kinds of species coexistence are based on
stabilizing effects. Resource partitioning is the simplest example for such mech-
anism. Fluctuations may result in two additional mechanisms, the “storage
effect” and the “effect of relative nonlinearity” (Chesson, 1994). Both of them
are related to the nontriviality of averaging. Therefore they are vanishing in a
fully additive linear model, that behaves like its averaged counterpart (Chesson
and Huntly, 1997). Chesson (2000a) extended the theory for spatially varying
environment. The effects of storage and relative nonlinearity work identically to
the previous case. However, spatial averaging results in an additional diversity-
stabilizing effect, which is related to the spatial covariance between the local
density and local growth rate.

Instead of the spatial averaging, we used the theory of structured popula-
tions. Still, the approach presented here is entirely consistent with Chesson’s
one. The first and the second terms of our Eq. (32) correspond to his stan-
dardized environmental (E) and competitive (C) parameters, respectively. The
additive linear construction of our model ensures, that both the storage effect
and the effect of relative nonlinearity is vanishing. (The first one would corre-
spond to non-additivity of the environmental and the competition parameter;
the second one would mean a difference between the invader and the resident
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in the spatially averaged competition parameter.) Consequently, the type of
coexistence, which was studied in Section 3, is completely explained by the
density-growth rate covariance. This conclusion is in line with the intuitive
picture: The essential point is that a species maintains a higher density in the
patch, in which its growth rate is higher. This covariance is diminishing at
high migration rates. Small modifications of the current model would lead to
reappearance of the other two effects. Still, the covariance effect seems to be
the main issue in the investigated type of coexistence.

While Levene (1953) used the term “niche” for the two patches of his model,
later fragmentation of the theory disconnected the specific studies of (spatial,
or not) species coexistence from the verbal “niche theory”, mostly referring to
Hutchinson’s niche axes. Still, development of coexistence theory has remained
consistent with the original concept of competitive exclusion and niche segre-
gation. Both Levins’s understanding on the role of regulating variables (Levin,
1970, 1974) and Chesson’s one on the need to be averaged differently point to the
necessity for ecological differentiation. The expectation that space-time hetero-
geneity can weaken competition and de-emphasize the importance of segregation
for coexistence was falsified (Chesson, 1991; Chesson and Huntly, 1997). The
explicit interest towards niche theory, as the “central organizing aspect of mod-
ern ecology”, was rejuvenated by Leibold (1995). The investigation presented
here closed the circle by mathematically connecting the spatial/structured co-
existence problem to a formalized concept of competitive niche.
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A Perron-Frobenius for continuous dynamics

Perron-Frobenius theorem plays an important role in the discrete-time matrix
population theory (Caswell, 2001, p. 79). We use in a slightly different for
continuous time, as discussed bellow.

All off-diagonal elements of the continuous-time dynamical matrix must be
non-negative. It is a consequence of the requirement that abundance of the i-
states must remain non-negative under all circumstances. (Assume, that Mij <
0 for any i 6= j and only nj is different from zero. Then, the resulting dni/dt < 0
would be absurd.) Moreover, irreducibility of the dynamical matrix is assumed.
Then we prove the following statements:

• The dominant eigenvalue (defined as the eigenvalue with the greatest real
part) is real, unique and simple, i.e. the corresponding left and right
eigenvectors are unique.

• The left and right eigenvectors, corresponding to the dominant eigenvalue,
are real and strictly positive.

Proof One can chose a real positive constant Λ such that the matrix

M+ = M + Λ1 (41)

is nonnegative. Matrix M+ inherits irreducibility from matrix M . Perron-
Frobenius theorem applies for M+ and guaranties the existence of a real positive
eigenvalue ̺+

1 , that has the greatest magnitude and is simple; the corresponding
left and right eigenvectors are real and strictly positive. Obviously ̺+

1 can be
characterized as the eigenvalue of matrix M+ with the greatest real part (Fig.
4). Matrix M has the very same eigenvectors as of M+ but its eigenvalues are
shifted by the real constant −Λ. Obviously, the eigenvalue of matrix M with
the greatest real part is

̺1 = ̺+
1 − Λ, (42)

which proves the statements.
Note that ̺1 is not necessarily the eigenvalue of the greatest magnitude

of matrix M . As the matrix M+ is allowed to be imprimitive, it may have
additional eigenvalues with the same magnitude as ̺+

1 . Still, ̺+
1 and ̺1 are

unique in their capacity of being the eigenvalue (of the corresponding matrix)
with the greatest real part. In discrete time, imprimitivity with imprimitivity
index d would result in periodic behavior with period d. No such issue exists in
real time. Therefore, while primitivity is a usual assumption in discrete time,
it is not needed for the continuous case.
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Figure 4: Eigenvalues with the greatest magnitude in an imprimitive matrices
with d = 5.

B Perturbation of growth rate and population

structure

Here we derive Eqs. (21-22) by determining the perturbation of the growth rate
r and population structure p of any population under a small change dM of
the dynamical matrix M .

The perturbed quantities will be denoted by prime. The perturbed eigen-
value equation is

M ′p′ = ̺′1p
′, (43)

where

M ′ = M + dM (44)

is the perturbed dynamical matrix.
We want to express the perturbed population structure p′ in terms of the

unperturbed right eigenvectors of the matrix M , as

p′ =
D

∑

j=1

cjwj , (45)

where cj are coefficients to determine.1 Substitution into Eq. (43) leads to

(M + dM)
∑

j

cjwj = ̺′1
∑

j

cjwj . (46)

We multiply this equality with the dominant left eigenvector v1 from the
left and use the orthogonality relation (10).

1It is always possible, if the matrix has D different eigenvectors, i.e. if it is of simple

structure.
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∑

j

cjv1dMwj = (̺′1 − ̺1)c1. (47)

By Eq. (9), vanishing perturbation corresponds to c1 = 1. Then, one can
write

c1 = 1 + dc1 + h.o.t., (48)

where dc1 is proportional to the perturbation; the higher order terms are omit-
ted. The rest of the coefficients vanish without the perturbation, so

cj = dcj + h.o.t j 6= 1. (49)

With substitution of these forms into Eq. (47) and omission of the higher
order terms one arrives to the change of the growth rate

dr = d̺1 = ̺′1 − ̺1 = v1dMw1 = vdMp, (50)

where the notations v = v1, p = w1 were used (cf. Caswell, 2001, p. 209).
Now we turn to determine the perturbation of the population structure. Eq.

(46) is multiplied with vi (i 6= 1) from the left, leading to

∑

j

cjvidMwj = (̺′1 − ̺i)ci. (51)

Using Eq. (49) results in

dci =
vidMp

̺1 − ̺i

i 6= 1. (52)

Then the perturbed population structure is

p′ = (1 + dc1)p +
∑

i6=1

vidMp

̺1 − ̺i

wi. (53)

The value of dc1 is determined by the requirement of preserving the sum-
mation the elements of p:

1 =

s
∑

l=1

p′l = 1 + dc1 +
∑

i6=1

dciUi, (54)

where Ui was defined by Eq. (23). This leads to

dc1 = −
∑

i6=1

dciUi. (55)

Then, from Eq. (45),

dp = p′ − p = dc1p +
∑

i6=1

dciwi. (56)

Substituting this into Eq. (53) leads to

dp =
∑

i6=1

(wi − Uip) ◦ vi

̺1 − ̺i

dMp, (57)

which can be written into the form (21) by introducing the matrix A with (22).
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Barabás, G., Meszéna, G., submitted. When the exception becomes the rule:
the disappearance of limiting similarity in the Lotka–Volterra model.

Case, T. J., 2000. An Illustrated Guide to Theoretical Ecology. Oxford Univer-
sity Press.

Caswell, H., 2001. Matrix population methods: Construction, analysis and in-
terpretation. Sinauer Associates.

Chesson, P., 1991. A need for niches? Trends in Ecology and Evolution 6, 26–28.

Chesson, P., 1994. Multispecies competition in variable environment. Theoreti-
cal Population Biology 45, 227–276.

Chesson, P., 2000a. General theory of competitive coexistence in spatially-
varying environments. Theoretical Population Biology 58, 211–237.

Chesson, P., 2000b. Mechanism and maintenance of species diversity. Annual
Review of Ecological Systems 31, 343–366.

Chesson, P., Huntly, N., 1997. The roles of harsh and fluctuating conditions in
the dynamics of ecological communities. American Naturalist 150, 519–533.



24 Limiting similarity and niche theory for structured populations

Diekmann, O., Gyllenberg, M., Huang, H., Kirkilionis, M., Metz, J. A. J.,
Thieme, H. R., 2001. On the formulation and analysis of general deterministic
structured population models: II. Nonlinear theory. Journal of Mathematical
Biology 43, 157–189.

Diekmann, O., Gyllenberg, M., Metz, J. A. J., 2003. Steady state analysis of
structured population models. Theoretical Population Biology 63, 309–338.

Diekmann, O., Gyllenberg, M., Metz, J. A. J., Thieme, H. R., 1998. On the for-
mulation and analysis of general deterministic structured population models:
I. Linear theory. Journal of Mathematical Biology 36, 349–388.

Doebeli, M., Dieckmann, U., 2003. Speciation along environmental gradient.
Nature 421, 259–264.

Durrett, R., Levin, S., 1998. Spatial aspects of interspecific competition. Theo-
retical Population Biology 53, 30–43.

Emery, S. M., 2007. Limiting similarity between invaders and dominant species
in herbaceous plant communities. Journal of Ecology 95, 1027–1035.

Gause, G. F., 1934. The struggle for existence. Williams and Wilkins, Baltimore.

Geritz, S. A., Kisdi, E., 2000. Adaptive dynamics in diploid, sexual populations
and the evolution of reproductive isolation. Proceedings of the Royal Society
of London B 267, 1671–1678.

Goldberg, D. E., 1990. Components of resource competition in plant communi-
ties. In: Grace, J. B., Tilman, D. (Eds.), Perspectives on plant competition.
Academic Press, San Diego, pp. 27–49.

Hardin, G., 1960. Competitive exclusion. Science 131, 1292–97.

Hastings, A., Botsford, L. W., 2006a. Persistence of spatial populations depends
on returning home. Proceedings of the National Academy of Sciences USA
103, 6067–6072.

Hastings, A., Botsford, L. W., 2006b. A simple persistence condition for struc-
tured populations. Ecology Letters 9, 846–852.

Heino, M., Metz, J. A. J., Kaitala, V., 1997. Evolution of mixed maturation
strategies in semelparous life-histories: the crucial role of dimensionality of
feedback environment. Philosiphical Transactions of the Royal Society of Lon-
don B, Biological Sciences 353, 1647–1655.

Hutchinson, G. E., 1957. Concluding remarks. cold springs harbor symposion.
Quant. Biol. 22, 415–427.

Hutchinson, G. E., 1978. An introduction to population ecology. Yale University
Press, New Haven and London.

Kisdi, E., Geritz, S. A., 1999. Adaptive dynamics in allele space: evolution of
genetic polymorphism by small mutations in a heterogeneous environment.
Evolution 53, 993–1008.



25 Limiting similarity and niche theory for structured populations

Krebs, C. J., 2001. Ecology. The experimental analysis of distribution and abun-
dance. Benjamin Cummings, San Francisco, California.

Leibold, M. A., 1995. The niche concept revisited: mechanistic models and
community context. Ecology 76 (5), 1371–1382.

Levene, H., 1953. Genetic equilibrium when more than one ecological niche is
available. American Naturalist 87, 331–333.

Levin, S. M., 1970. Community equlibria and stability, and an extension of the
competitive exclusion principle. American Naturalist 104(939), 413–423.

Levin, S. M., 1974. Dispersion and population interactions. American Naturalist
108(960), 207–228.

MacArthur, R. H., Levins, R., 1964. Competition, habitat selection and char-
acter displacement in a patchy environment. Proceedings of the National
Academy of Sciences USA 51, 1207–1210.

MacArthur, R. H., Levins, R., 1967. The limiting similarity, convergence, and
divergence of coexisting species. American Naturalist 101 (921), 377–385.

May, R. M., 1973. Stability and Complexity in Model Ecosystems. Princeton
University Press, Princeton.

May, R. M., 1974. On the theory of niche overlap. Theoretical Population Biol-
ogy 5, 297–332.

May, R. M., MacArthur, R. H., 1972. Niche overlap as a function of environ-
mental variability. Proceedings of the National Academy of Sciences USA 69,
1109–1113.
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