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Abstract

We investigate symmetry-breaking bifurcation patterns in evolution in the framework of adaptive dynamics (AD). We define weak and

strong symmetry. The former applies for populations where only the simultaneous reflection of all individuals is an invariant

transformation. The symmetry is strong in populations where reflection of some, but not all, individuals leaves the situation unchanged.

We show that in case of weak symmetry evolutionary branching can lead to the emergence of two asymmetric variants, which are mirror

images of each other, and the loss of the symmetric ancestor. We also show that in case of strong symmetry, evolutionary branching can

occur into a symmetric and an asymmetric variant, both of which survive. The latter, asymmetric branching differs from the generic

branching patterns of AD, which is always symmetric. We discuss biological examples for weak and strong symmetries and a specific

model producing the new kind of branching.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Symmetry and asymmetry are central concepts in
understanding both phylogeny and ontogeny of animals
(Moore, 2001). Except for sponges, all animal taxa can be
characterized either by ‘bilateral’ or by ‘radial’ symmetry of
their basic body plan. This distinction is based on having
one or several planes of reflection symmetry passing
through the oral-aboral axis of the animal. The actual
body structure is often less symmetric than the basic body
plan due to secondary loss of symmetry. In particular, the
left–right symmetry of the bilateral animals is rarely
perfect. Different kinds of asymmetries emerge in different
time scales of evolution. On one hand, asymmetric
locations of some organs, as the heart, or the liver, are as
old as the Vertebrates themselves. On the other hand,
functional asymmetry of the human brain is probably very
recent. We are interested in understanding the bifurcation
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structure of such evolutionary transitions from reflection
symmetry to asymmetry.
Evolution is inherently related to optimization. The

fitness function of the first can be regarded as the analogue
of the potential function of the second. An optimal
structural design is often asymmetric even if the problem
is characterized by a symmetric potential function.
Bifurcations describing such asymmetric optima have been
studied elsewhere (Várkonyi and Domokos, 2006).
Nevertheless, evolution is more than just optimization.

In most cases, a pre-defined global fitness function would
predict a single winner of selection; optimization itself is
unable to explain the origin of biological diversity. To
account for the coexistence of parallel branches of the
evolutionary tree, one should take into account ‘frequency
dependence’, i.e. the fact that the fitness function depends
on the relative sizes of competing populations. In case of
frequency dependence, evolution itself modifies the fitness
function all the way. Consequently, one cannot rely on a
global optimality criterion for predicting the outcome of
evolution. According to the theory of adaptive dynamics
(AD) (Dieckmann and Law, 1996; Metz et al., 1996; Geritz
et al., 1997, 1998; Meszéna et al., 2005) directional
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Fig. 1. Three fundamental patterns for the emergence of asymmetry
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evolution via small mutational steps still proceeds in the
direction of the current fitness gradient. However, the
‘uphill’ evolution on the ‘fitness landscape’ is no longer
guaranteed to end up at a local optimum, a local pessimum
can be equally reached (Eshel, 1983; Taylor, 1989;
Christiansen, 1991; Abrams et al., 1993). In the latter case,
the theory predicts branching in the evolutionary process
(Geritz et al., 1997, 1998).

Evolutionary branching can be initiated in two different
ways (Metz et al., 1996; Geritz et al., 2004):
(referred to as type (A), (B) and (C)).
I.
 In a constant environment evolution converges to a
branching point and branches there immediately.
II.
 The population evolves to an evolutionary stable
strategy and waits there until an environmental change
bifurcates this strategy to a branching point. Evolu-
tionary branching occurs as a response to the modified
conditions.
It is a general perception (c.f. punctuated equilibrium,
Eldredge and Gould, 1972) that the bulk of evolutionary
change is restricted to short transitional periods, i.e. most
of the time evolution stops, and is waiting for an
environmental change which will trigger the new phase of
rapid evolution. This implies that that the seemingly more
complicated Scenario II. is more relevant for the real
process (c.f. Geritz et al., 2004).

While the primary goal of AD theory is to demonstrate
the possibility of evolutionary branching in a population,
we will apply it with appropriate modifications for the
problem of emergence of asymmetry. We have to take into
account that ontogeny of a symmetric body plan is simpler
(and more ancient) than that of an asymmetric one.
Consequently, we assume exact body symmetry, as a
starting point. Then, emergence of asymmetry can be
initiated in two ways (analogous to the two categories of
evolutionary branching above):
I.
 A change in the developmental program allows body
asymmetry (and asymmetry proves to be advanta-
geous). This scenario can happen in constant environ-

ment.

II.
 The possibility for asymmetry is already present and an

environmental change makes asymmetry advantageous.
In principle, three possible scenarios for the evolutionary
loss of symmetry can be considered (Fig. 1). In the simplest
case, an initially symmetrical population evolves to be
asymmetric. This scenario is not a branching and it can be
fully described within the confines of the optimization
picture of evolution.

In the second scenario, two asymmetric populations
(which are symmetric mirror images of each other), emerge.
If we assume a fixed potential (fitness function) then the
slightest violation of the reflection symmetry between the
two asymmetric populations would result in a temporary
advantage of one of the populations and competitive loss
of the other one. This scenario becomes robust only by
assuming a frequency dependent fitness function.
The third scenario assumes a different kind of evolu-

tionary branching. A new, asymmetric form speciates away
from the original, symmetric one, however, the symmetric
one survives as well. This scenario is inconceivable under
the assumption of a fixed potential. On one hand, the
asymmetric form cannot appear while the symmetric form
is optimal, on the other hand, the symmetric form cannot
survive when it becomes a local pessimum. Nevertheless,
the scenario makes sense from the biological point of view:
a new species acquires a new way of life and does not
disturb its ancestor. Hence, frequency dependence is a
necessary, however not sufficient ingredient of such
situations. Any typical branching pattern is locally sym-
metric according to the conventional AD theory. Branch-
ing into a symmetric and an asymmetric branch is beyond
the confines of the existing approach. As we will see, this
type of evolution is made possible by the higher order
terms, which are usually neglected, but become relevant
here, as a consequence of the symmetry condition. The
above three scenarios will be referred to henceforth as type
(a), (b) and (c), respectively.
We summarize the necessary elements of AD for

constant environment in Section 2. Section 3 introduces a
distinction between two types of symmetry. Section 4 deals
with possible scenarios for the emergence of asymmetry.
Section 5 summarizes the patterns of evolutionary branch-
ing, Section 6 provides a model example. In the last section
we review a few real-word cases.

2. Adaptive dynamics in constant environment

Here we summarize the essentials of AD theory in
constant environment, following Geritz et al. (1997, 1998).
We consider evolution of a continuous inherited trait x,

referred to as phenotype, or strategy. (Later we will identify
this trait as the symmetry breaking parameter.) We assume
that the investigated population is large and well-mixed, it
may consist of several sub-populations with different
strategies x1,x2,y, xL. It is assumed that an underlying
model specifies the joint dynamics of these strategies.
We further assume that this dynamics reaches a unique,
global and ‘simple’ attractor (i.e. fixed point, periodic or
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Fig. 2. (A) An example of the pairwise invasibility plot (PIP) with two

singular strategies. x�1 is neither convergence stable nor ESS, x�2 is

convergence stable and ESS. (B) The area of mutual invasibility.
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quasi-periodic but not chaotic) on the fast time scale,
except in degenerated cases (such as the coexistence of
identical strategies).

From time to time, the dynamical system is perturbed
by the emergence of a new, random ‘mutant’ strategy y

with a small initial number of individuals. The mutant
strategy y is always similar to an already existing one,
which is considered as the ancestor of the mutant. The
mutants appear on a slower time scale, i.e. when the
already existing strategies have already reached the global
fixed point.

The goal of AD is to understand the generic properties of
the emerging evolutionary process, independently from the
specific dynamical system governing the fast time scale
changes of the populations.

2.1. Fitness concept

The fitness of a population is defined as its growth rate,
i.e. the difference between the birth and the death rates. A
population grows when its fitness is positive, i.e. when its
rate of births is higher than its rate of deaths. In particular,
one can asses the fitness of a newly emerged, and still rare,
mutant strategy y when the ‘resident’ strategies x1,
x2,y, xL are in equilibrium. This fitness is the so-called
‘invasion fitness’ sx1; x2 ; ...; xL

ðyÞ. There are three possible
scenarios with respect to the fate of strategy y:
�
 It spreads and the new equilibrium will contain this new
strategy. (The transition may, or may not, involve
extinction of some of the residents.) This case corre-
sponds to positive invasion fitness, i.e. sx1 ;x2 ; ...; xL

ðyÞ40.� �

�
 It becomes extinct sx1; x2; ...; xL

ðyÞo0 .

�
 Finding the consequences of the case sx1; x2; ...; xL

ðyÞ ¼ 0
needs more detailed analysis. The mutant may spread,
disappear or stay sparse according to higher order
effects in density. This situation appears generically only
in case of a linear fitness function (e.g. evolutionary
game theory, c.f. Maynard-Smith, 1982, Meszéna et al.,
2001.) or resource competition with substitutable
resources (see e.g. Schreiber and Tobiason, 2003). The
latter case is not relevant for us.

Henceforth we will mainly concentrate on the invasion
against a single resident, for which the invasion fitness sxðyÞ

trivially satisfies

sxðxÞ ¼ 0. (1)

As a consequence of Eq. (1), the Taylor expansion of sx(y)
at (x,y) ¼ (x1,x1), in the variables Dx ¼ (x�x1) and
Dy ¼ (y�x1),) can be written as

sxðyÞ
��
x;y�x1

¼ ðDy� DxÞða00 þ a10Dxþ a01Dyþ a20Dx2

þ a11DxDyþ a02Dy2 þ a30Dx3 þ � � �Þ. ð2Þ

The sign of the function sx(y) can be conveniently plotted
in a pairwise invasibility plot (PIP). (See Fig. 2(A) for an
example.) In this plot, horizontal and vertical axes
correspond to the resident (x) and the rare mutant (y)
strategies, respectively. The dark region represents the
strategy combinations for which the mutant can spread
against the resident, i.e. sx(y)40. Observe that the main
diagonal is always a borderline between the black and
white regions, due to Eq. (1).
Fig. 2(B) represents mutual invasibility: gray region

corresponds to strategy pairs (x,y) for which both sxðyÞ40
and syðxÞ40. The joint dynamics of such strategies should
have an internal stable fixed point corresponding to
positive number of individuals for both strategies, i.e. such
a strategy pair (x,y) is able to coexist. Conversely (since we
assumed that an internal attractor is globally attracting)
coexistence implies the non-negativeness of the two
growths rates. If the degenerated cases (sx(y) ¼ 0 or
sy(x) ¼ 0 ) are not considered (c.f. the comments at the
beginning of this subsection), coexistence implies mutual
invasibility.
In many evolutionary models there exists a potential

function W(y), also referred to as fitness, with the property
that the strategy with the larger potential outcompetes any
strategy with a lower potential. This potential-optimization
picture can be connected to the concept of invasion fitness
via the identification

sxðyÞ ¼W ðyÞ �W ðxÞ, (3)

i.e., the invasion fitness of a mutant corresponds to its
advantage in potential-fitness. No mutual invasibility, i.e.
no coexistence is possible in such models.
Evolutionary problems, which are characterized by an

invasion fitness of type (3), are considered as frequency-
independent, because fitness advantages/disadvantages do
not depend on the relative frequencies (abundances) of the
strategies. In this case,

qsxðyÞ

qxqy
¼ a10 � a01 ¼ 0 (4)

follows from (3).
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2.2. Directional evolution

The direction of evolution via small mutational steps is
determined by the ‘local fitness gradient’

DðxÞ ¼
qsxðyÞ

qy

� �
y¼x

¼ a00 (5)

provided that it is non-zero. If DðxÞ40, a mutant with
strategy y4x invades the resident population with strategy
x, whereas if DðxÞo0, mutants with yox can spread. Here
we assume that jy� xj is small enough to guarantee that
the linear term dominates the fitness advantage/disadvan-
tage of the mutant. Moreover, sxðyÞ � DðxÞðy� xÞ40
implies syðxÞ � DðyÞðx� yÞ � DðxÞðx� yÞo0 in this con-
text, i.e. the initial advantage of the mutant ensures that it
ousts and replaces the resident, provided that DðxÞa0.

As newer and newer mutants arrive and replace their
ancestors, this ‘trait substitution process’ constitutes a
more-or-less continuous evolution in the direction deter-
mined by the local fitness gradient. See Dieckmann and
Law (1996) for the deterministic approximation of this
stochastic evolutionary process. This ‘directional’ evolu-
tion proceeds until a ‘singular’ strategy x� is reached, for
which Dðx�Þ ¼ 0.

In a PIP, evolution to the positive direction is
represented by having a black region immediately above
the main diagonal (strategies between x�1 and x�2 in Fig.
2(A); see also Fig. 3B). Conversely, a black region
immediately below the main diagonal represents evolution
to the negative direction (strategies smaller than x�1 or
larger than x�2 in Fig. 2; see also Fig. 3A). Consequently,
singular strategies are characterized by intersection points
of the main diagonal and another borderline (Fig. 3C–J).
Fig. 3. Local PIPs around the point (x,x) at non-singular (A, B) and

typical singular (C–J) x strategies.
2.3. Properties of singular strategies

Three distinct kinds of stability can be associated with
singular strategies. A singular strategy x� is a local
attractor (or convergence stable) if and only if D(x), which
determines the direction of evolution, is positive for xox�

and negative for x4x� in the vicinity of the singular point.
In the generic case, this yields the condition

dDðxÞ

dx

����
x¼x�
¼

q2sxðyÞ

qy2

����
y¼x¼x�

þ
q2sxðyÞ

qxqy

����
y¼x¼x�

¼ a10 þ a01o0.

(6)

Note that a convergence stable singular strategy need not
be a local fitness maximum. Strategy x� is a local fitness
maximum (or evolutionary stable strategy, (ESS)) in the
generic case, if

q2sxðyÞ

qy2

����
y¼x¼x�

¼ a01o0. (7)

Finally, a rare x� strategist mutant can invade a population
with slightly different strategy x (x� is invasion stable), if
sxðx

�Þ40
��, which yields generically the condition

q2sxðyÞ

qx2

����
y¼x¼x�

¼ a10o0. (8)

The three conditions coincide for frequency independent
fitness by Eq. (4), but not in general. For example, there are
singular strategies, which are convergence stable, but
evolutionary unstable (Eshel, 1983; Taylor, 1989; Chris-
tiansen, 1991; Abrams et al., 1993)
At a typical singular strategy, the fitness function is

dominated by the a10 and a01 coefficients, thus the local PIP
contains two intersecting lines (one of these is the main
diagonal), which divide the plot into four regions. (Later we
will encounter cases when the first non-zero term is of higher
order.) Fig. 3C–J represent the possible local configurations of
the PIP around a singular strategy. The singular strategy is an
ESS, if the vertical line through the intersection point lies in
white regions (cases G–J) and it is invasion stable if it lies in the
black part (cases C,D,I,J). Convergence stability is indicated
by a black region above the main diagonal on the left side and
below the main diagonal on the right (cases C,H–J).
The really important singular points are the convergence

stable ones, because an evolving population does not come
close to a convergence-unstable strategy. At the same time,
if a population’s strategy is already x*, the two other
stability criteria determine its fate.
�
 If x* is an ESS (cases G–J), it cannot be invaded by any
similar mutant, i.e. it is a final rest point of the
evolutionary process.

�
 If it is neither ESS nor invasion stable (cases E,F),

similar mutants spread in a population of x* strategists
and the latter ones get extinct. (The overall result is
generically divergence from x* because the E and F type
singularities are not convergence stable.)
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�
 Finally, at an evolutionary unstable but invasion stable
strategy (cases C,D), both the resident and the mutant
are preserved and evolutionary branching occurs in such
a way that both sub-populations diverge from the
singularity. This branching process is discussed in
Section 5. We remark that case D is usually not
considered as a branching strategy, because its conver-
gence instability prevents populations from converging
to it, i.e. branching practically cannot occur.

3. Adaptive dynamics and symmetry

3.1. Symmetry concept

Our goal is to describe symmetry-breaking via the
evolution of an inherited continuous strategy x, in
accordance with the framework of AD. Therefore we
study evolution in the vicinity of a ‘‘symmetrical strategy’’
x0, for which x0 þ Dx and x0 � Dx strategists are reflec-
tions of each other for arbitrary Dx.

As illustration, consider a geometrical model of snail
shell forms (Raup, 1962) with three parameters, one of
which is the slope x of the spiral (Fig. 4). If x ¼ 0, we have
a curve in a plane, generating a flat shell, reflection-
symmetric with respect to this plane. On the other hand, if
x40, the shell is peaked and asymmetrical (dextral). With
a negative value of x, the result is a reflected (sinistral)
shell. In such a situation x ¼ 0 is a ‘‘symmetrical strategy’’.

We already pointed out in Section 1 that the initial
strategy of the evolving population is assumed to be exactly
a symmetrical strategy. Beyond that, we assume in line with
the AD methodology that the strategy x can be modified
only by small mutation steps. In particular, we do not
allow such ‘‘macro’’ mutations, via which ‘left-handed’
offspring of a ‘right-handed’ parent appear. See Section 6
for the consequences of some different assumptions.

3.2. Two levels of symmetry

The question of evolutionary advantage/disadvantage of
symmetry breaking is relevant only if the environment itself
possesses the symmetry in question, that is, if replacing all
individuals of the model by the reflected ones does not
affect the model behavior. Two levels of symmetry can be
distinguished in case of frequency dependence, i.e. when
the interactions between the individuals affect the fitness
function. We call a symmetrical strategy strongly symme-
Fig. 4. An example of symmetrical strategies: x is the slope of the spiral

axis of the shell. x40 means dextral while xo0 means sinistral shell.
trical if all of the interactions are independent of left/right
handedness. In this case, one can reflect some individuals,
but not the others, and find the same model behavior. In
contrast, if the interactions depend on the handedness of
the affected individuals, only the simultaneous reflection of
all individuals is an invariant transformation of the model.
The latter situation will be referred to as weak symmetry.
On the level of invasion fitness, weak symmetry is

represented by the relation

sx0þDxðx0 þ DyÞ ¼ sx0�Dxðx0 � DyÞ, (9)

where Dx and Dy denote x� x0 and y� x0, respectively.
This symmetry condition implies that all terms of odd
order vanish in the Taylor expansion of the invasion fitness
function at x0. That is, instead of Eq. (2), the expansion can
be written as

sxðyÞ
��
x;y�x0

¼ ðDy� DxÞða10Dxþ a01Dyþ a30Dx3 þ a03Dy3

þ a21Dx2Dyþ a12DxDy2 þ � � �Þ. ð10Þ

Since a00 vanishes, the symmetrical strategy x0 is always
singular. Since the coefficients a10 and a01 remain
generically non-zero, the classification of the possible PIPs
for a weak symmetry remains the same as in Fig. 3/C–J.
In contrast, the strong symmetry is characterized by a

more restrictive condition:

sx0þDxðx0 þ DyÞ ¼ sx0þDxðx0 � DyÞ ¼ sx0�Dxðx0 þ DyÞ.

(11)

In this case the general form of the invasion fitness func-
tion is

sxðyÞjx;y�x0
¼ ðDy2 � Dx2Þðb00 þ b10Dx2 þ b01Dy2 þ b20Dx4

þ b11Dx2Dy2 þ b02Dy4 þ � � �Þ. ð12Þ

The expansion contains only the terms, which are even in

both variables, due to the more restrictive symmetry
condition. Comparison with (10) yields a01 ¼ a10 ¼ b00

and similar relations for the higher order coefficients.
For strong symmetry, b00o0 (Fig. 5/A) implies conver-

gence, evolutionary and invasion stability, because

q2sxðyÞ

qx2

����
y¼x¼x0

þ
q2sxðyÞ

qxqy

����
y¼x¼x0

¼ 2b00 þ 0, (13)

q2sxðyÞ

qy2

����
y¼x¼x0

¼ 2b00, (14)

q2sxðyÞ

qx2

����
y¼x¼x0

¼ �2b00. (15)

Such a strategy is an attractive endpoint of evolution.
Conversely, b0040 leads to a singularity, which is unstable
in all senses (Fig. 5B), i.e. it is a repellor.
Later, we will also be interested in the case of vanishing

b00. If b00 ¼ 0, the character of the singular point is
typically determined by b10 and b01 (Fig. 5/C–H). The six
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Fig. 5. Local PIPs for strong symmetry. A, B: x0 is a generic strongly

symmetrical strategy (b00a0); C–H: x0 is a degenerated strongly

symmetrical strategy (b00 ¼ 0).
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emerging configurations are partly invasion stable
(C,D,H), partly ESS (F–H), and the two properties are
not equivalent. In particular, C and D are branching

strategies.
Note the geometrical interpretation of the two kinds of

symmetry. Weak symmetry is equivalent to the fact that the
PIP is invariant under a rotation of 1801 around the point
(x0,x0). For strong symmetry, the PIP has a vertical and a
horizontal symmetry axis at the point (x0,x0). The weak
and the strong symmetry are equivalent in frequency
independent models, because frequency-independence
means that the strategy of the competitors (including the
handedness) does not affect the fitness of a strategy.
Moreover, we have in this case

1

4

q4sxðyÞ

qx2qy2
¼ b10 � b01 ¼ 0. (16)
Fig. 6. The parameter plane for weak symmetry (the grey domain is ESS)

and the two generic bifurcation events (1, 2).
4. Emergence of asymmetry

In this section, we study the evolutionary loss of bilateral
symmetry. We mentioned in Section 1 that it can occur in
constant environment (case I) or it can be induced by
environmental change (case II). In the latter case, we
suppose that, initially, the symmetrical strategy is evolu-
tionary stable and the population assumes this strategy.
The phenomenon will be discussed separately for weak
symmetry (Section 4.1), for strong symmetry without
frequency dependence (Section 4.2) and for strong sym-
metry with frequency dependence (Section 4.3).
4.1. Weak symmetry

We showed that the classification of generic weakly
symmetrical strategies is the same as that of singular
strategies without symmetry (Fig. 3). In constant environ-
ment (case I), asymmetry can emerge via type (a)
divergence (c.f. Fig. 1) if the possibility of asymmetry
develops when the population is at a repellor strategy (such
as Fig. 3/E,F). Alternatively, type (b) branching may occur
if asymmetry becomes reachable at a branching strategy
(Fig. 3/C,D). Notice that evolution starts exactly from the
singular point, so convergence stability is irrelevant and
Fig. 3/D is also a branching point. The steps of this kind of
branching process are summarized in Section 5 parallel
with a different branching pattern.
Changing environment (case II) can be described by a

moving point in the a10-a01 plane (Fig. 3), which is
originally located in the ESS region. There are two generic
possibilities for loosing evolutionary stability: reaching the
border in a non-invasion stable or in an invasion stable
state (Fig. 6, cases 1 and 2). In case 1, type (a) divergence
from the symmetrical strategy occurs, while in case 2, an
ordinary (type (b)) evolutionary branching is initiated.

4.2. Strong symmetry in frequency independent models

We have demonstrated in Section 2 that evolutionary
and invasion stability are equivalent in frequency indepen-
dent models and branching cannot occur. Thus asymmetry
can only emerge via type (a) divergence from the
symmetrical strategy in constant as well as in changing
environment. (Divergence can be realized at Fig. 5/B type
strategies.)

4.3. Strong symmetry in frequency dependent models

Despite frequency-dependence, the ESS and the invasion
stability conditions are generically equivalent at strongly
symmetrical strategies. Thus, the common way of the
emergence of asymmetry is of type (a), analogously to the
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Fig. 7. The parameter line for strong symmetry. The grey domain is ESS,

the arrow indicates bifurcation.
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previous part. However, as the degenerate cases of Fig. 6/
C–H break the equivalence, a different and surprising
scenario may be realized in case II (changing environment)
in presence of slow variation of b00. The bifurcation
process (Fig. 7) has the following main steps:
�
 Initially, b00o0 and the symmetrical strategy is Fig. 5/A
type (a stable evolutionary endpoint).

�
 The coefficient b00 approaches zero and one of the

configurations of Fig. 5/C–H emerges temporarily.

�
 After some time, b00 gets far from zero on the positive

side. The degenerate configuration disappears and the
strategy becomes Fig. 5/B type (repellor).

If the mutation step would be infinitesimally small, the
higher order terms would dominate the Taylor expansion
(12) only for infinitesimally short period, not long enough
to have any effect on the evolution of the population.
However, we consider small, but finite steps in the strategy
space. In this case the fourth-order terms dominate the
quadratic ones in a finite interval of b00, which may
correspond to a long time interval, if the environmental
change is sufficiently slow. Here evolutionary development
of the population depends on the properties of the
temporarily emerging, degenerate configuration:
�
 If the degenerate state is neither invasion stable nor an
ESS (Fig. 5/E), type (a) divergence occurs as soon as the
close-to-degenerate state is reached.

�
 If the degenerate state is an ESS (Fig. 5/F–H), the

population stays symmetric, but later, as the degenerate
state is replaced by a Fig. 5/B type repelling strategy,
divergence occurs again.

�
 If the degenerate state is invasion stable but not

evolutionary stable (Fig. 5/C,D) an evolutionary
branching occurs in the close-to-degenerate state. In
Section 5, we describe this branching process in detail
and show that it is of type (c).

5. Novel way of evolutionary branching

The main goal of this section is to describe the details of
the novel branching process of a population with strongly

symmetric strategy, which was recognized in Section 4.3.
(This is the situation b10ob00 � 0ob01, see Fig. 5). This
process differs significantly from the generic pattern of
branching without symmetry (Geritz et al., 1998). We
describe the two ways of branching simultaneously to
highlight the similarities and differences. Notice that the
generic branching pattern in case of weak symmetry

(Section 4.1) is the same as the latter one.
The steps of the two processes are collected in the left

(standard case) and right (strongly symmetric case) column
of Table 1. In both cases, row 1 presents the fitness
functions before branching, row 2 shows why two evolving
branches coexist, and row 3 presents the corresponding
fitness functions. It is demonstrated in row 4, that the
number of coexisting branches cannot be more than
two. Finally the directions of evolution are determined
in row 5.
In the standard case, the branching type evolution starts

with the arrival of a mutant, which is located on the
opposite side of the singularity x* than the ancestor (row 2,
left column). The consecutive mutation events always end
up with extinction of the middle strategy (row 5, left
column), i.e. two sub-populations evolve away from each
other, resulting in a type (b) branching. In the strongly
symmetric case, branching starts with the coexistence of a
new, asymmetric mutant and its symmetric ancestors (row
2). The sequence of mutation-extinction steps results in a
branching, in which one of the strategies stays symmetric
while the other one evolves away; that is, a symmetric–a-
symmetric pair emerges in a type (c) branching (row 5,
right column).
Evolution follows the introduced patterns as long as

both sub-populations are close to the singular strategy.
Later, the asymmetrical branch (at type (c) branching) or
both branches (at type (b) branching) continue to evolve
directionally according to their respective local fitness
gradient, as demonstrated in Section 2.2 for a lone strategy.

6. A model example

In this section, we present a specific model to illustrate
the type (c) branching. It is based on the examples of
Levene (1953), Geritz et al. (1998). There are two
parameters in the model, b and T, the latter representing
the time-dependence of the model.

6.1. Description of the model

Consider a population of x1, x2,y, xn strategists, the
number of the strategists is N1,N2,y,Nn, respectively. The
model assumes non-overlapping generations, which live in
a spatially heterogeneous environment consisting of two

different patches. A limited number of individuals, denoted
by K1 and K2, live in each of the patches. The total number
of individuals is constant:

N1 þN2 þ � � � þNn ¼ K1 þ K2. (19)

The lifecycle of each generation consists of three parts.
�
 During dispersal, the offspring is distributed randomly
in both patches; the frequency of a strategy xk among
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Table 1

The course of the branching process at a generic branching strategy x* (standard case, left column), and the branching process emerging at a degenerated,

strongly symmetric strategy x0 (right column)

Standard case (Fig. 3/C) Case of strong symmetry (Fig. 5/C,D)

1 The fitness function sx� ðyÞ, as a function of y, has a minimum at

y ¼ x�. Locally, it can be approximated as (c.f. Eq. (2), Fig. 8/A).

sx� ðyÞ � a01 y� x�ð Þ
2.

The fitness function sx0 ðyÞ, as a function of y, has a minimum at

y ¼ x0. Locally, it can be approximated as (c.f. Eq. (12), Fig. 9/A)

sx0
ðyÞ � b01 y� x0ð Þ

4.

2 Two strategies near to, but at the opposite sides of the singularity

(i.e. x1px�px2) mutually invade each other and, consequently, are

able to coexist.

If x1 is near to x0, x1 and x0 mutually invade each other, i.e. they are

able to coexist

3 If x1 and x2 are coexisting (c.f. row 2) and both of them are near to

x�, the invasion fitness is

sx1x2
ðyÞ � a01 y� x1ð Þ y� x2ð Þ.

(see Fig. 8(B), Eq. (2)), because x1;x2 � x� implies sx1x2
ðyÞ � sx� ðyÞ

and sx1x2
ðx1Þ ¼ sx1x2

ðx2Þ ¼ 0 by definition.

If the x1 ¼ x0 þ Dx1 and x0 strategies are coexisting (c.f. row 2) and x1

is near to x0, the invasion fitness has a double root at x0 and two roots

arranged symmetrically around x0:

sx0x1
ðyÞ � b01 y� x0ð Þ

2 y� x0 � Dx1ð Þ y� x0 þ Dx1ð Þ. (18)

(see Fig. 9(B), Eq. (12)), because x1 � x0 implies sx0x1
ðyÞ � sx0

ðyÞ, and

sx0x1
ðx0Þ ¼ sx0x1

ðx1Þ ¼ 0 by definition, and finally sx0x1
ðx0 � DxÞ ¼

sx0x1
ðx0 þ DxÞ for any Dx, due to Eq. (11).

4 If more than two strategies coexisted, the corresponding fitness

function would be 0 at each of them. The locally second-order

invasion fitness function cannot have more than two zeroes, i.e.

coexistence of more than two strategies is impossible in the vicinity

of x�.

Generically only one strategy can coexist with x0, because the arrival

of two strategies with exactly the same distance from x0 ðx1 ¼

x0 þ Dx;x2 ¼ x0 � DxÞ is improbable and otherwise (x1 ¼ x0 þ Dx1,

x2 ¼ x0 þ Dx2) the fitness function should have zeros at x0 � Dx1 and

x0 � Dx2 and a double root in x0. This is impossible, because it has

only four roots in the vicinity of x0.

5 If a new mutant emerges in presence of a coexisting pair, one of the

three should become extinct by row 4. The strategy becoming

extinct should have a negative growth rate when it has become rare

already. As a0140, this condition holds only for the middle

strategy, i.e. if x1ox2ox3 are the three strategies, x2 will become

extinct independently of which of them was the mutant. (Fig. 8(C))

When a new mutant appears at the equilibrium of x0 and another

strategy, one of the three strategies (ie. x0, x1 ¼ x0 þ Dx1 and

x2 ¼ x0 þ Dx2) should become extinct by row 4. Assume that

jDx1jojDx2j. Then x1 will become extinct, because the strategy

becoming extinct should have a negative growth rate when it has

become rare already (Fig. 9(C).

Fig. 8. Fitness of possible mutants at a standard branching strategy without symmetry. (A) before branching; (B) after branching; (C) fitness functions

related to the coexistence of all pairs of strategies from x1, x2 and x3.

Fig. 9. Fitness of possible mutants at a degenerated, strongly symmetric branching strategy. (A) before branching; (B) if x0 and another strategy coexist;

(C) fitness functions related to the coexistence of all pairs of strategies from x0, x1 and x2.
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the offspring is proportional to the frequency of the
parents with the same strategy, i.e. to Nk.

�
 In the second phase, the offspring is subjected to

frequency-independent selection, which changes the
relative frequencies of the strategies in both patches
independently. The chance of an xk strategist in the ith
patch of surviving this phase is proportional to a given
function fi (xk).
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�
 In the third phase, the survivors spread in both patches
until their numbers reach the capacities (K1 and K2) of
the patches. The relative frequencies of the strategies in
each of the patches are constant in this phase.

In this model, the chance of surviving the second phase is

f 1ðxÞ ¼ e�2b2
1

x2�x4 , (20)

f 2ðxÞ ¼ e2b2
2

x2�x4 (21)

with b1 and b2 positive parameters (see also Fig. 10). Since
both functions are symmetrical, x ¼ 0 is a symmetrical
strategy. Observe that this is an example of strong

symmetry, hence there is no difference between x and �x

strategists.
The optimal strategy is 7b2 in the second patch, i.e.

there is an asymmetrical optimum. In the first patch, there is
a symmetrical optimum the ‘strength’ of which is deter-
mined by b1.

Consider a rare mutant with strategy y in an equilibrium
population of x1, x2,y, xn strategists with equilibrium
numbers Ñ1, Ñ2,y, Ñn. If Ny is the (small) number of
mutants in a generation, the Ny

0 number of mutants in the
next generation can be approximated as

N 0y ¼ K1
f 1ðyÞNyPn

k¼1f 1ðxkÞ ~Nk

þ K2
f 2ðyÞNyPn

k¼1f 2ðxkÞ ~Nk

. (22)

Consequently, the logarithmic per-capita growth rate of
the rare mutants is

sx1;x2; ...; xn ðyÞ ¼ log
N 0y

Ny

� �

¼ log K1
f 1ðyÞPn

k¼1f 1ðxkÞ ~Nk

þ K2
f 2ðyÞPn

k¼1f 2ðxkÞ ~Nk

 !
. ð23Þ

To reduce the number of model parameters, assume that
b1 ¼ b2 ¼ b and let the parameter T be defined as

T ¼
K2

K1 þ K2
. (24)

We can determine the fitness function of rare mutants in
this model in case of a monomorphic resident population
Fig. 10. The functions f1(x) and f2(x).
(with strategy x):

sxðyÞ ¼ log 1� Tð Þe�2b2 y2�x2ð Þþx4�y4 þ Te2b2 y2�x2ð Þþx4�y4
j k

.

(25)

As it is expected, the fitness function satisfies the condition
(11) of strong symmetry.
The results for the dimorphic case (two resident

populations) are more involved. First, the equilibrium
densities Ñ1, Ñ2 of the two resident populations have to be
determined from the following two equations:

~Ni ¼ K1
f 1ðxiÞ

~Ni

f 1ðx1Þ
~N1þf 1ðx2Þ

~N2
þ K2

f 2ðxiÞ
~Ni

f 2ðx1Þ
~N1þf 2ðx2Þ

~N2
for i ¼ 1; 2 .

(26)

Second, the results for Ñ1 and Ñ2 and Eqs. (20), (21) and
(24) are substituted into (23) to obtain the fitness function.
The results are quite complicated and they have to be
analyzed numerically.
The fitness function for three or more coexisting strategies

is uninteresting, since our analysis (in Section 6.2) shows that
the maximal number of stably coexisting strategies is two.

6.2. Singular strategies and coalitions in the model

We investigated the behavior of the model at different
values of b and T. Analysis of the fitness function (25)
yielded the following results:
�
 x0 ¼ 0 is singular strategy, since it is a special sym-
metrical strategy.

�
 We determined the fitness gradient (see Eq. (5)) by

deriving Eq. (25) with respect to y. Solving Dðx�Þ ¼ 0,
we found another pair of singular strategies:

xnðb;TÞ ¼ �b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T � 1
p

if T41
2 . (27)
�
 We analyzed the stability properties of the singular
strategies by substituting Eq. (25) into the conditions (6)
and (7). The x0 ¼ 0 strategy is ESS, invasion and
convergence stable if To1

2
, it is degenerate if T ¼ 1

2
and

it is unstable in all senses if T41
2
.

�
 The asymmetrical singular strategy is ESS invasion and
convergence stable if bo2�1/4, or if b42�1/4 and T4T�

with

TnðbÞ ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
�

1

8b4

r
. (28)

Otherwise it is a branching strategy (convergence and
invasion stable but not ESS).� �

�
 In the degenerate state T ¼ 1

2
state, the stability of the

symmetrical strategy can be determined from fourth
derivatives of (25) with respect to x and y, which
determine the b10 and b01 coefficients (see Eq. (12) and
Fig. 5). The symmetrical strategy is ESS (Fig. 5/H type)
if bo2�1/4 and it is branching strategy (of type Fig. 5/C)
if b42�1/4.
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Further, numerical computations showed that:
�
 There exists a convergence stable and ESS coalition of
symmetrical x1 ¼ 0 and asymmetrical x2(b) strategists at
appropriate parameter values.

�
 The value of x2(b) is independent of T.
�
 The coalition exists if TminðbÞoToTmaxðbÞ. If
ToTminðbÞ, the asymmetrical strategy vanishes, while
if T4TmaxðbÞ, the symmetrical strategy gets extinct.

The PIP associated to the fitness function (25) is
illustrated in Fig. 11 for some values of b and T. We can
also construct an evolutionary bifurcation diagram of the
model, which shows the singular strategies and coalitions
at specific values of b (Fig. 12). We also plotted x2(1),
Tmin(1) and Tmax(1) in Fig. 12. For other values of b, the
functions x2(b) and Tmin(b) can be determined numerically
and Tmax(b) is the solution of x2ðbÞ ¼ x�ðb;TmaxðbÞÞ (c.f.
Eq. (27)).

6.3. Branching in the model

As we already showed, the model has a degenerate,
symmetrical branching strategy at T ¼ 1

2
and b42�1/4. This

means that a type (c) branching occurs at appropriate
values of b (e.g. b ¼ 1), if the parameter T (representing the
capacity of the second patch relative to the first one) slowly

increases on evolutionary time scale and it reaches 1/2. Fig.
13(A), illustrates this branching in numerical simulations.
Fig. 11. PIP of the model at specific parameter values (the black

Fig. 12. Bifurcation diagram of th
If the increase of T is faster, the model behavior is
different: type (c) branching is replaced by type (a)
divergence from the symmetrical strategy, followed by an
‘ordinary’ branching (Fig. 13(B).
If bo2�1/4, no branching occurs. If T is increased and it

reaches 1/2, the population diverges from the symmetrical
strategy (type (a)) and converges to the asymmetrical
singular strategy (Fig. 13(C)), which itself slowly moves
with the increase of T.
At our example the increased speed of environmental

change modified the pattern of the emergence of asym-
metry (the type (c) branching of Fig. 13(A) was replaced by
type (a) divergence and a standard branching in an
asymmetrical state, as seen in Fig. 13(B)), but not the final
outcome. There are other models where the higher speed of
environmental change prevents branching, and modifies
the evolutionary outcome as well.

7. Biological examples of symmetrical strategies

Some illustrative examples of strongly and weakly

symmetrical strategies based on real-world populations
are summarized in this section.
A widely known example of the secondary loss of

bilateral symmetry is the beak of crossbills, which we
introduce based on Benkman (1996), see also other works
of the same author. The asymmetry of the beak is
measured by the angle x of the lower mandible of
crossbills: x ¼ 0, xo0 and x40 correspond to straight,
region means positive fitness and the white means negative).

e model at b ¼ 0:5 and b ¼ 1.
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Fig. 13. Numerical simulations of the model. Thin lines indicate the monomorphic singular strategies in the model as functions of T . (A–B) With b ¼ 1

and different speeds of environmental changes (T). In both cases, the two coexisting branches converge to the stable coalition (x1;x2)E(0;70.953), c.f.

Fig. 12/B. (C) With b ¼ 0:5. Branching does not occur, evolution converges to the stable singular strategy.

Fig. 14. Schematic upper view of a crossbill eating seeds from conifers on

pine trees. The bird stands on the tree branch (on the left or right side of

the conifer), and it can pick out the seeds from the two grey quarters of the

conifer. (A righty crossbill could eat the seeds from the white quarters.)
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leftward curved and rightward curved lower mandibles,
respectively. Needless to say, x ¼ 0 is a symmetrical
strategy.

Crossbills use their special beaks to pick out seeds from
pinecones. Many of them, such as the White winged
crossbill subspecies Loxia leucoptera megaplaca forage on
pinecones, which cannot be twisted or removed from the
trees (Fig. 14). Individuals can pick out seeds from only a
part of the conifers depending on the direction of their
beak. Thus, ‘lefties’ and ‘righties’ are ecologically different:
the rarer one has ecological advantage in comparison with
the more common one. The difference between lefties and
righties is also indicated by the stable 1:1 ratio of the two
morphs. This is an example of a weak symmetry. In
contrast, the subspecies Loxia leucoptera leucoptera and
bifasciata forage on different conifers, which are easily
removed or twisted. In this case no ecological difference
seems to exist between the two types of beaks. Accordingly,
significant variance in the ratio of the two morphs was
observed in different populations. This is an example for
strong symmetry.

Different species of Cichlid fishes in Lake Tanganyika
provide another pair of examples. The scale-eating
Perissodus microlepis attack other species from behind
and try to byte scales from the left or the right side of the
victim (Takahashi and Hori, 1994). They have two
asymmetrical forms in correspondence with the hunting
strategy: Some of them open their mouth to the left, while
the other ones have right-sided mouths. If x is the angle of
mouth opening (x ¼ 0 for symmetrical mouth, xo0 for
left-sided and x40 for right-sided mouth), x ¼ 0 is again a
symmetrical strategy. It is weakly symmetrical, because a
small group of �x in a big population of x strategists
would have higher fitness than the frequent phenotype,
because of the unexpected way of attacking the victims and
the inequality sxð�xÞ40, contradicting Eq. (11).
The herbiborous species Telmatochromis temporalis has

similar, asymmetrical mouth, used to bite weed from the
side of rocks while swimming along them (Mboko et al.,
1998). As the weed does not adapt itself to the ‘hunting
strategy’ of the fish, the x and �x strategists are
ecologically equivalent in this case. Thus, x0 ¼ 0 can be
considered as a strongly symmetrical strategy.
More recent studies of Lake Tanganyika populations

show, that the slightly asymmetrical body structure of
many Cichlid species might have a different reason: it is an
adaptive result of cross-predation in food chains. (Lefty
predators tend to prefer righty victims and vice versa, see
Nakajima et al., 2004). According to these results, all these
species are examples of weak symmetry.
Finally, the shell chirality of snails, introduced in Section

3, becomes important at mating (Asami et al., 1998). The
mating strategy of some pulmonate land snail species,
which have relatively flat shells, prevents mating with
individuals of opposite chirality, while a different mating
behavior of other, tall-shelled species permits it. The
different chirality has in the latter case only minor
disadvantage according to experiments of Asami et al.
(1998). The first situation is a typical example of weak
symmetry and the second is close to strong symmetry
(which would be perfect if there was no disadvantage of
cross-mating at all).

8. Discussion

In this paper, we examined the evolutionary patterns of
the emergence of secondary asymmetry in creatures with
bilateral symmetry in their basic body plan. Three distinct
scenarios have been described, as illustrated in Fig. 1. Two
levels of bilateral symmetry (‘strong’ and ‘weak’) have been
defined and the difference has been illustrated on biological
examples. We determined the typical evolutionary patterns
in different classes of models concerning symmetry.
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Table 2

Types of emergence of asymmetry. Note that symmetry is always strong in

absence of frequency dependence. (a), (b) and (c) refer to the scenarios of

Fig. 1

Weak Strong

Non frequency-dependent (a)

Frequency dependent (a) (b) (a) (c)

P.L. Várkonyi et al. / Theoretical Population Biology 70 (2006) 63–7574
The results are summarized in Table 2: the type (a)
emergence of asymmetry (when the superior asymmetrical
form outcompetes the inferior symmetrical one) is possible
in all three cases. Type (b) (when two asymmetrical
variants emerge, avoiding competitive exclusion) requires
weakly symmetrical frequency dependence. Finally, type
(c) (when an asymmetrical form branches away from the
unchanged and surviving symmetrical form) is restricted to
the case of frequency-dependent strong symmetry.

Type (c) is a novel way of evolutionary branching. It
differs from the usual pattern since the initial speed of
divergence is not equal for the two branches. It relies on the
transient dominance of the higher order terms, i.e. on a
sufficiently slow change of the environmental parameters.
We simulated this type of branching on a symmetrical
version of Levene’s classical multi-patch model.

Our study assumes that the size and direction of
asymmetry (both determined by the phenotypic value x)
are inherited from the parents and mutations cause small
deviation in x. In some cases, the direction of asymmetry
develops randomly at some stage of the individual
development (see Brown and Wolpert, 1990, Govind,
1989). This different inheritance mechanism would leave
type (b) unchanged, and modify type (a) or (c) in such a
way that a second asymmetrical branch with opposite
handedness also appears.

It is also possible that, while handedness is inherited
from parents, a special ‘reflected’ mutation (i.e. an
offspring with opposite handedness) may occur with small
probability. This is the case e.g. if the handedness is
determined by a simple two-allele locus. If this type of
mutation is frequent enough, again, the asymmetric
variants will populate both asymmetric branches in types
(a) and (c). However, if the reflected mutations are
exceedingly rare, the relative frequencies of the lefties and
the righties will change randomly.

This paper relies, and augments, the theory of AD.
However, it has been pointed out in Section 1 that the
emergence of asymmetry is initiated either by change in the

developmental program or by environmental change. While
neither plays a central role in the classical AD theory, one
of these transitions is an essential element of the
phenomenon investigated in this paper.

It is an ongoing debate in evolutionary biology whether
AD itself is a proper description of the evolutionary
process. (See, for instance, the target review by Waxman
and Gavrilets (2005) and the related commentaries.) This
debate is about the relative importance of ecological and
genetic factors in evolution (c.f. Schluter, 2001). According
to the AD assertion, evolution must be considered in the
context of ecologically induced frequency-dependence. We
followed this tradition, which justifies considering any
evolutionary phenomenon first in an asexual model. AD-
based models with complete sexual genetics (e.g. Dieck-
mann and Doebeli, 1999) seem to support the possibility
that speciation of sexual organisms is based on the
phenomenon of AD-style evolutionary branching (Metz
et al., 1996; Geritz et al., 2004). This concept is referred to
as adaptive speciation (Dieckann et al., 2004, see Gavrilets,
2005 for a criticism). While is beyond the confines of this
paper to deal with this debate, we note the parsimony of
this theory of ‘‘adaptive speciation’’: emergence of a new
species is a direct adaptive consequence of the ecological
possibility for this new species.
Adaptive speciation is often considered as an explana-

tion for sympatric speciation, i.e. when no spatial segrega-
tion is involved (c.f. Via, 2001, Turelli et al., 2001).
However, the idea is not restricted to the sympatric case, as
several models, asexual as well as sexual ones, demon-
strated evolutionary branching in spatial context (Meszéna
et al., 1997, Mizera and Meszéna, 2003; Doebeli and
Dieckmann, 2003). The model we presented in Section 5
belongs to this category also.
An interesting way to continue our research would be to

detect the patterns of the emergence of asymmetry in
Nature. The examples mentioned in Section 1 (asymmetry
is of the human brain and the heart of vertebrates) seem to
be frequency-independent, thus they emerged probably via
scenario (a). Observations on the present state yield no
evidence for the evolutionary pattern of the emergence of
asymmetry in the past. Thus, with the exception of a few
cases, empirical study of speciation is very difficult. While it
is too slow for direct observation, simultaneously it is too
fast to leave a fossil record (Eldredge and Gould, 1972). As
a consequence, theoretical insight always played an
important role in this field (Turelli et al., 2001). We
contributed to this endeavor by investigating the bifurca-
tion patterns of emergence of body asymmetry. We are
intrigued to learn whether the novel way of evolutionary
branching we uncovered is a part of the natural process of
evolution.
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Mizera, F., Meszéna, G., 2003. Spatial niche packing, character

displacement and adaptive speciation along an environmental gradi-

ent. Evol. Ecol. Res. 5, 1–20.

Moore, J., 2001. An Introduction to Invertebrates. Cambridge University

Press, Cambridge.

Nakajima, M., Matsuda, H., Hori, M., 2004. Persistence and fluctuation

of lateral dimorphism in fishes. Am. Nat. 163, 692–698.

Raup, D.M., 1962. Computer as aid in describing form in gastropod

shells. Science 138, 150–152.

Schluter, D., 2001. Ecology and the origin of species. Trends Ecol. Evol.

16, 372–380.

Schreiber, S.J., Tobiason, G.A., 2003. The evolution of resource use. J.

Math. Biol. 47, 56–78.

Takahashi, S., Hori, M., 1994. Unstable evolutionary stable strategy and

oscillation: a model of lateral asymmetry in scale-eating cichlids. Am.

Nat. 144, 1001–1020.

Taylor, P.D., 1989. Evolutionary stability in one-parameter models under

weak selection. Theor. Popul. Biol. 36, 125–143.

Turelli, M., Barton, N.H., Coyne, J.A., 2001. Theory of speciation. Trends

Ecol. Evol. 16, 330–343.

Via, S., 2001. Sympatric speciation in animals: the ugly duckling grows up.

Trends Ecol. Evol. 16, 381–390.

Várkonyi, P.L., Domokos, G., 2006. Symmetry, optima and bifurcations

in structural design. Nonlinear Dynam. 43, 47–58.

Waxman, D., Gavrilets, S., 2005. 20 questions on adaptive dynamics: a

target review. J. Evolution. Biol. 18, 1139–1154.

http://angel.elte.hu/~geza/GeritzPRL.pdf
http://angel.elte.hu/~geza/GeritzPRL.pdf
http://angel.elte.hu/~geza/MeszenaEtal1997.pdf
http://angel.elte.hu/~geza/MeszenaEtal1997.pdf
http://angel.elte.hu/~geza/MeszenaEtal1997.pdf
http://angel.elte.hu/~geza/PhysRevLett_95_078105.pdf
http://angel.elte.hu/~geza/PhysRevLett_95_078105.pdf
http://angel.elte.hu/~geza/PhysRevLett_95_078105.pdf

	Emergence of asymmetry in evolution
	Introduction
	Adaptive dynamics in constant environment
	Fitness concept
	Directional evolution
	Properties of singular strategies

	Adaptive dynamics and symmetry
	Symmetry concept
	Two levels of symmetry

	Emergence of asymmetry
	Weak symmetry
	Strong symmetry in frequency independent models
	Strong symmetry in frequency dependent models

	Novel way of evolutionary branching
	A model example
	Description of the model
	Singular strategies and coalitions in the model
	Branching in the model

	Biological examples of symmetrical strategies
	Discussion
	Acknowledgments
	References


