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ABSTRACT

We investigated the effect of limited dispersal on co-existence and evolutionary branching on a
lattice. The ‘contact process’, which is the minimal model of population growth on a lattice, is
modified by introducing local resource competition in addition to site competition. We study
phenotypic evolution in the framework of the theory of adaptive dynamics. We show that a
higher birth rate cannot compensate for a lower intrinsic lifetime reproduction ratio. Speed
difference alone, without resource competition or different dispersal scale, does not lead to
co-existence via a competition–colonization trade-off. Co-existence and evolutionary branching
become possible only when resource competition, with reduced competition between the
populations, is introduced. There is a convergent stable singular point in the strategy space. The
singular strategy is an evolutionarily stable strategy (ESS) below a critical strength of resource
competition. Above this threshold, the singular strategy is no longer an ESS and evolutionary
branching occurs. This is the first demonstration of evolutionary branching on a lattice. We
compare the behaviour of the spatial simulation to its mean-field and pair approximation
counterparts. This comparison demonstrates that spatiality and limited dispersal reduce
the possibility of evolutionary branching, in addition to that of co-existence. We interpret this
phenomenon based on the partial spatial segregation between the competing strategies.

Keywords: adaptive dynamics, contact process, evolutionary branching,
interacting particle system, limited dispersal.

INTRODUCTION

The role of spatiality is a central issue of modern theoretical ecology (Czárán, 1998;

Dieckmann et al., in press). Local requirements/interactions and a limited ability to spread together
determine the fate of a population. Classical evolutionary concepts, like competition
and niche, were developed for spatially non-explicit models assuming no constraint on
dispersal. The evolutionary implications of the ecological circumstances are relatively
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well understood in this context. On the other hand, the evolutionary consequences of
spatiality have only been investigated in a relatively few cases (Axelrod, 1987; Nowak et al., 1995;

Boots and Sasaki, 1999; Harada, 1999; Ferriere and Le Galliard, 2001; Le Galliard et al., 2003; Boots et al., 2004). Most of
these studies addressed evolution to an optimal phenotype; some of them relied extensively
on pair approximation. We contribute to the study of spatial evolutionary problems by
testing the applicability of the concepts and methods of adaptive dynamics. In particular,
we investigate the possibility of evolutionary branching in the context of interacting particle
systems, when dispersal limitation is important. Our basic tool is numerical simulation,
through which we test also the applicability of the approximate methods, mean-field and
pair approximation.

Competitive interactions often generate frequency-dependent selection regime (Christiansen,

1988). The theory of adaptive dynamics (Brown and Vincent, 1987; Dieckmann and Law, 1996; Geritz et al., 1997,

1998) addresses ecology-induced frequency-dependent selection in asexually reproducing
populations. It is based on the concept of invasion fitness, defined as the growth rate of a
mutant population, which is rare in an already equilibrated resident population. With small
mutation step-size, evolution always proceeds in the direction of the (local) gradient of
invasion fitness. Frequency dependence may cause this directional evolution to converge to
a minimum, instead of a maximum of the fitness function (Eshel, 1983; Taylor, 1989; Christiansen, 1991;

Abrams et al., 1993). Then the emerging disruptive selection splits the population and drives the
evolution of the two emerging sub-populations in opposite directions (Geritz et al., 1997, 1998).
This process is referred to as evolutionary branching. It was suggested as the mathematical
basis of competitive/adaptive speciation (Dieckmann and Doebeli, 1999).

The initial rarity of the mutant population is a central concept of adaptive dynamics.
In our context, this assumption is problematic for two reasons. First, in previous spatial
adaptive dynamical models (see, for example, Meszéna et al., 1997; Kisdi and Geritz, 1999; Day, 2000;

Metz and Gyllenberg, 2001; Mizera and Meszéna, 2003), a non-trivial assumption about the invasion
process was made. It was supposed that the spatial distribution of an invader equilibrates
early during the process of invasion – that is, while the invader is still rare everywhere. This
assumption does not necessarily correspond to the real process of invasion. If the area
of potential distribution is large and dispersal is limited, the invader population may
become abundant at a given location first, and spread out from this location later. Then
the assumption of initial rarity of the invaders becomes untenable. Second, in these
previous studies, a large number of individuals (resident or mutant) were present in the
interaction neighbourhood of a single individual. If the interaction neighbourhood of
a mutant individual is restricted to a few other individuals, then local reproduction leads
to over-representation of the mutants in this small neighbourhood. That is, the mutant
will not be rare in the interaction neighbourhood, even if it is globally rare. Moreover,
as a more specific issue, the existence of evolutionary branching is non-trivial because
even the possibility of co-existence is limited in some spatial models (Neuhauser and Pacala, 1999;

Bolker et al., 2003).
Interacting particle systems (IPS) (Spitzer, 1974) are widely used to describe the spread of a

population with limited dispersal in a conceptually infinite world. Cellular automata are
a subset of IPS models with synchronized updating and deterministic transition rules. We
have previously applied the basic concepts of adaptive dynamics in the IPS context for
studying evolution of clonal integration in plants (Mágori et al., 2003). However, this model
did not allow for the co-existence of different phenotypes. Consequently, the most inter-
esting phenomena of adaptive dynamics, such as evolutionary branching, could not
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be studied using it. Here we choose a more ‘strategic’ (Czárán, 1998, p. xii) approach. We
investigate the simplest possible IPS model permitting co-existence and evolutionary
branching. Our starting point is the ‘contact process’ (Harris, 1974), which is the
minimal model of population growth on a lattice. We modify this set-up by introducing a
Lotka-Volterra type local resource competition. We will address the following questions:

1. Does higher birth rate provide a colonization advantage to compensate for the
competition disadvantage of a lower intrinsic lifetime reproduction rate?

2. How does limited dispersal in the spatial model modify the pattern of co-existence
induced by Lotka-Volterra type competition?

3. Is evolutionary branching possible with limited dispersal?

To examine the role of spatiality and dispersal limitation, we require a ‘control
experiment’ model. We will compare the spatial (IPS) simulations to the mean-field
approximation of the model. The latter corresponds to a non-spatial Lotka-Volterra
competition model. The pair approximation, which is a frequent tool in such investigations,
is also studied, as the middle ground between the IPS and mean-field approximation.

First, we introduce the model and its mean-field and pair approximations. The next
section presents the results for competition between two distinct populations. Finally, we
investigate competition and evolution assuming a continuous trait describing the
populations.

THE MODEL AND ITS APPROXIMATIONS

Model definition

We model competing populations on a square lattice with periodic boundary conditions.
Any site can be occupied by a single individual, or it can be empty. Any site can interact with
its von Neumann neighbourhood (i.e. with the four adjacent cells). Time is continuous and
thus possible events are characterized by their rates. For instance, the death rate d of an
individual means that the site occupied by the individual becomes empty with probability
dδt during an infinitesimal time interval δt.

The precursor of our model is the contact process introduced by Harris (1974) with an
epidemiological interpretation. Individuals die with rate 1. With rate λ, an individual pro-
duces an offspring at a site, randomly chosen from the four neighbouring sites, provided it is
empty. In the multi-type version of the contact process considered by Neuhauser (1992), two
populations with different λ values compete for empty sites. In this model, the population
with the higher value of λ always outcompetes the inferior one. To examine the possibility
of co-existence, evolution and evolutionary branching, we modified the multi-type contact
process in two respects:

• We introduced a new type of mortality, representing resource competition between
neighbours beyond the ‘natural’ death already present in the contact process. Therefore,
there are two ways of local competition in our model: individuals compete for empty sites
and for local resources.

• We do not normalize the natural death rate to 1 to allow the populations to differ in this
respect.
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First, we consider competition between two populations with different but heritable
demographic rates. Resource competition between individuals of the same population will
be higher than between individuals belonging to different populations. Then, we introduce
a single continuous strategy variable which is inherited either faithfully or with the
possibility of a mutation. The strategy of an individual determines its demographic rates.
Resource competition between two individuals decrease with their increasing strategy
difference.

The possible demographic events are as follows:

1. Birth. For each individual present, a birth event occurs with rate b. The target site is
chosen randomly from the four neighbouring sites. If the selected site is empty, an
offspring appears there. If the site is already occupied, the birth event is aborted.

2. Natural mortality. An individual dies with rate d and the occupied site becomes empty.
This event is independent of the occupancy of other sites.

3. Competitive mortality. This type of mortality is a consequence of competitive inter-
actions between neighbouring individuals. The resource competition coefficient A ∈ [0,1]
describes the strength of competition between two individuals. For any individual, a
competitive mortality event is initiated with rate k. A neighbouring site is selected
randomly. If this site is occupied, then the focal individual dies with probability A. A = 1
for identical individuals and A > 1 for different ones.

The ratio b/d determines the lifetime reproductive output of an individual, when alone. We
will refer to this quantity as the intrinsic lifetime reproductive ratio.

Simulation starts by populating every lattice site with one individual, chosen at random
from the populations we consider. This initial configuration is updated step by step
afterwards. In each step of simulation, a single event takes place. The type of the event and
the affected individual is chosen at random such that the probability of that specific event
with that specific individual is proportional to the corresponding rate.

A ‘real-time’ variable t is maintained for comparison purposes. As a sufficiently accurate
approximation for the exponentially distributed between-event time intervals, t is increased
by the inverse of the sum of the rates of all possible events for all individuals in each step of
simulation.

We use a 100 × 100 square lattice. When competition between two populations was
investigated – that is, with the exception of the evolutionary simulations – the processes
were allowed to relax for 500 time units. Then we established the equilibrium densities of the
two populations by averaging the densities for another 500 time units. We considered
a population extinct if its averaged density was below 10% of the other population (to
compare the results for different thresholds, see Fig. 1). They were considered to co-exist
when none of them was extinct in this sense.

Mean-field approximation

The mean-field approximation describes populations by their densities. We define density
ci as the probability of having an individual of type i on a randomly chosen site. The
approximation neglects spatial correlations – that is, it assumes that the local frequencies are
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equal to global densities. In this approximation, the population dynamics is described by the
differential equation

dci

dt
= �bi�1 − �

j

cj� − d − �
j

kiAijcj�ci (1)

for each type i. The first term within the square brackets represents successful birth events.
The second and the third terms represent natural and competitive mortality, respectively.

This dynamics can be written in the Lotka-Volterra form

dci

dt
= �r0i − �

j

aijcj�ci (2)

with the intrinsic growth rate

r0i = bi − d (3)

and the overall competition coefficient

aij = bi + kiAij (4)

Fig. 1. Comparison of the results of pairwise competition in the IPS model with different rates of
competitive mortality k for different extinction thresholds. Extinction thresholds are 1% (a) and 10%
(b), respectively.
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The total competition aij is the sum of site competition (first term) and resource competition
(second term). Obviously, the strength of site competition is independent of the character-
istics of the other individual, hence it does not depend on j.

In the pairwise competition simulations, we integrated the dynamics (2) numerically until
convergence. For comparability with the IPS simulations, we considered a species extinct if
its density was below 10% of the other species at the end of the simulation.

Pair approximation

Pair approximation provides a natural way to bridge the gap between spatial numerical
simulation and mean-field approximation. The mean-field neglects any kind of spatial
information. Pair approximation takes into account pair correlations by tracking
densities of pairs of sites instead of that of singlets. Higher-order correlations are still
neglected.

Although the interactions are restricted to the von Neumann neighbourhood, it is useful
to track the densities of pairs within the wider Moore neighbourhood. Therefore, we have
both the adjacent and the diagonal pair configurations. Let the adjacent pair density pa

ij

be the probability that two randomly chosen adjacent sites are in states i and j. Con-
figurations ij and ji are considered to be different, but pa

ij = pa
ji. We define the diagonal

pair densities pd
ij in a similar way for diagonal neighbour sites. The time-derivatives of

pair densities are

dpa
ij

dt
= �

i� j� 
Φi� j� → ij − �

i� j�
Φij → i� j� (5)

and

dpd
ij

dt
= �

i� j�
Ψi� j� → ij − �

i� j�
Ψij → i� j� (6)

where the values Φ and Ψ are the rates of appropriate pair transitions for the adjacent and
for the diagonal pairs, respectively (see the Appendix for the calculation of these quantities).
The density of a particular ij pair increases because of i� j� → ij transitions and decreases
because of ij → i� j� transitions.

After testing several types of moment closures, we have decided to use the symmetric-
power-2 moment closure technique to close the dynamical equations (Law et al., 2003).

We solved the dynamic equations of pair approximation by numerical integration. Ini-
tially (t = 0), all the sites were occupied, divided evenly between the two species (c0 = 0,
c1 = 0.5, c2 = 0.5) in an uncorrelated way (pa

ij = pd
ij = cicj). After reaching the equilibrium

(t = 10,000), singlet densities were calculated from pair density values:

ci = �
j

pa
ij = �

j

pd
ij (7)

We used the same criterion for extinction as for the IPS and for the mean-field. Note that the
mean-field and the pair approximations are deterministic, whereas the IPS is stochastic by
nature.
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COMPETITION BETWEEN TWO POPULATIONS

To address Question 1 in the Introduction, first we investigate the case of k = 0 (i.e. the lack
of competitive mortality). The outcome of competition between two populations is shown
in Fig. 2. The intrinsic lifetime reproductive ratios of the competitors are shown on the two
axes. The black and white areas represent the combination of the intrinsic lifetime repro-
ductive ratios at which the first or the second process, respectively, outcompetes the other
one. As seen in Fig. 2, it is always the process with the larger intrinsic lifetime reproductive
ratio that wins. The grey region representing co-existence is restricted to the diagonal.

In the left-hand panel of Fig. 2, competing populations are equivalent when their
respective b/d values are equal (i.e. on the main diagonal). In line with biological common
sense, as well as with the analytical results of Neuhauser (1992), the population with the
higher birth rate wins, everything else being equal. In contrast, in the right-hand panel,
both birth and death rates of the second population are multiplied by 10. Although events
take place more frequently for the second population, this difference in speed does not affect
the outcome of competition. Neither of the populations is able to outcompete the other
when their intrinsic lifetime reproductive ratios are equal. The higher rate of acquisition
of the sites cannot compensate for a lower intrinsic lifetime reproductive ratio. This result,
which is in accordance with the conjecture of Neuhauser (1992) and the results of Bolker
and Pacala (1999) in a different model, answers Question 1 in the negative.

After establishing a lack of co-existence (except along the main diagonal) without
competitive mortality, we proceeded to Question 2 with local resource competition. We
studied competition of two distinct processes with fixed k > 0. We chose d1 = d2 (i.e. no
difference in speed was supposed here). We fixed b1, varied b2 and investigated which
values of b2 permitted co-existence. We found co-existence for a broad range of b2 in this case
(Fig. 3). Obviously, when the two populations are equivalent (b2 = b1) was always within

Fig. 2. Pairwise competitions of populations without competitive mortality (k = 0). Axes correspond
to intrinsic lifetime reproductive ratios of the two populations. If b1/d1 ≠ b2/d2, either population
1 (white) or population 2 (black) wins. Along the diagonal they co-exist (grey). Plots for populations
with (a) equal (d1 = d2 = 1) and (b) different (d1 = 1, d2 = 10) turnover rates.
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that range. The range of co-existence narrowed with increasing inter-population resource
competition coefficient A(≤1). It shrunk to the point b2 = b1 for A = 1.

Recall that the intra-population resource competition parameter was set to 1. Therefore,
A = 1 represented no distinction between the competitive effect of different populations.
The simulation results were in line with the expectation of co-existence with decreased
inter-specific competition.

Figure 3 illustrates that the region of co-existence is the broadest in the case of the
mean-field approximation. It is significantly narrower for the pair-approximation. In
the IPS version of the model, the range of parameters permitting co-existence is even
narrower than in the approximations of the model. (After noting this situation, we con-
ducted systematic investigations for the spatial model only inside the region of co-existence
of the pair-approximation.)

CO-EXISTENCE AND EVOLUTION ALONG A STRATEGY CONTINUUM

Continuous strategy scale

To study phenotypic evolution of competitive contact processes, we introduced a
continuous strategy variable x ∈ [− 1,1]. We assume the birth rate to be a Gaussian function
of the strategy as

b(x) = b0e
−

x2

2ω
2

(8)

Fig. 3. Region of co-existence for two competing populations with fixed competitive mortality.
Axes correspond to inter-population resource competition coefficient (A) and birth rate of population
2 (b2). The area between the curves is the region of co-existence in mean-field approximation
(dashed lines) and in pair approximation (solid lines). Dots correspond to individual IPS simulations.
Populations either co-existed (large dots) or one of them excluded the other (small dots). Other
parameter values: b1 = 5, d1 = d2 = 1, k = 5.
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where b0 is the maximal birth rate corresponding to the optimal phenotype x* = 0. The
standard deviation ω characterizes the width of this optimum. Natural and competitive
mortality rates (d and k, respectively) are independent of the strategy. The inter-population
resource competitive coefficient A(x, y) is a Gaussian function of the strategy difference

A(x,y) = e
−

(x − y)2

2σ
2

(9)

It is maximal between individuals of identical phenotypes and decreases with increasing
difference in phenotype. The width of this competition function is characterized by its
standard deviation σ.

Co-existence pattern

Figure 4 presents the outcome of competition between two species in the spatial model
(IPS), and in its approximations (mean-field and pair) at different levels of competitive
mortality k. We verified the robustness of our results by performing simulations of different
initial conditions. The results were identical in the case of an equal initial distribution of the
populations, and an initial density ratio of 9 :1.

The qualitative behaviour of the system is similar for the spatial model and for its two
approximations. In particular, the outcome of competition between two populations of
similar strategies is very generic. It is always the population with the strategy nearer to
the value x* = 0 that wins in such a contest. This phenomenon implies that strategy 0
(corresponding to maximal birth rate) is an attractor in an evolutionary sense. Were the

Fig. 4. Pairwise competitions with increasing rates of competitive mortality k. The three rows show
the results for mean-field approximation (MF), pair approximation (PA) and IPS. The three possible
outcomes are: victory by population 1 (white), victory by population 2 (black) and co-existence (grey).
The scale at the bottom shows the critical competitive mortality rates kc obtained from IPS, MF and
PA. Other parameter values: b0 = 10, d1 = d2 = 1, σ = 0.1, ω = 0.5.
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strategy an evolving parameter, as we will show latter, its evolution would converge to the
strategy 0. Following the terminology of Geritz et al. (1997), we will refer to strategy 0 as a
convergent stable strategy.

Another generic feature is that the region of co-existence widens considerably as the
competitive mortality rate k increases. For low values of k, the singular strategy is an ESS,
as no other strategy can survive against it. However, above a critical value kc, the singular
strategy loses its evolutionary stability, while it remains convergence stable. As we increase k
even further, more and more strategies are able to co-exist.

While the results of the IPS model and its approximations resemble each other, there
are significant differences. In line with our findings in the previous section, the area of
co-existence is much wider for the mean-field approximation than for the IPS simulation.
The behaviour of the pair approximation is in between the other two model versions. The
critical value of the parameter k, above which the singular strategy loses its evolutionary
stability, is very similar for the mean-field and for the pair approximation: kc ≈ 0.06.
In contrast, the value for the IPS model is kc ≈ 1.0.

Comparison of the IPS and the mean-field approximation demonstrates that limited
dispersal reduces the range of co-existence. With limited dispersal, we need a much higher
rate of competitive mortality for the co-existence of two given strategies. While pair
approximation captures this effect partially, it utterly fails to predict the correct value of the
threshold kc of the spatial model.

The mean-field case

The competition plots can be obtained analytically for the mean-field approximation
using invasion analysis. We assume that the mutant is rare, as compared to the resident
population. Then, the growth rate of the mutant strategy y against the resident strategy x is

rx(y) = b(y) − d − [b(y) + A(x, y)k]
b(x) − d

b(x) + k
(10)

Note that the selection gradient

D(x) =
∂rx(y)

∂y � y = x
(11)

always points towards the central strategy – that is, D(x) > 0 for x < 0 and D(x) < 0 for x > 0.
Therefore, x = 0 is always a convergent stable singular strategy, and this is the only singular
strategy of the model (cf. Geritz et al., 1997, 1998).

The singular point is an ESS if, and only if, the growth rate has a maximum there (i.e. if
the second derivative of the growth rate is negative):

∂2rx(y)

∂y2 = b″(y) − [b″(y) + ∂11A(y, x)k]
bx − d

bx + k
< 0 (12)

With the parameter values of Fig. 4, this condition leads to the critical value
kc = 0.0465116. Note the discrepancy with the simulation result kc = 0.06. This is due to
the fact that in the simulations, victory by a species was defined by the approximate
condition that cj < 0.01ci.
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Simulation of evolution

In this section, we simulate the process of evolution explicitely via small mutation steps.
Simulations start with a population of individuals of the same strategy value x0 filling up
the whole lattice. Mutations may occur with probability µ at each birth event. The strategy
of the mutant individual is chosen randomly in the ε neighbourhood of the strategy of its
ancestor. We observe the process of evolution until t = 10,000. Figure 5 presents three
evolutionary trajectories corresponding to different competitive mortality rates.

In line with the convergence stability of the central strategy predicted earlier, there is
directional selection towards this strategy for any value of k. If the central strategy is an
ESS (i.e. k < kc), it is the final rest point of evolution. In contrast, if the central strategy is
evolutionarily unstable (i.e. k > kc), it is an evolutionary branching point. In line with the
predictions of the theory of Geritz et al. (1997, 1998), evolutionary branching occurs at any
convergent stable but non-ESS singular strategy. After converging to this strategy, disrup-
tive selection splits the population. Then the emerging sub-populations evolve away from
each other. This prediction is clearly supported by our simulation result in Fig. 5.

This is the first published documentation of evolutionary branching in the IPS context.

DISCUSSION

Now we are able to answer the questions we posed in the Introduction:

1. Higher birth rate does not compensate for a lower intrinsic lifetime reproductive ratio,
and there is no co-existence based on a competition–colonization trade-off in our model.

Fig. 5. Evolutionary trajectories in IPS simulations with increasing competitive mortality rates k.
Density values are represented by different shades of black (dark represents high density). Parameter
values: d = 1, b0 = 10, x0 = 0.2, σ = 0.1, ω = 0.5, µ = 0.004, ε = 0.01.
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2. Limited dispersal significantly decreases the possibility of co-existence induced by
Lotka-Volterra competition.

3. Evolutionary branching is possible with limited dispersal, although in a reduced
parameter range.

For the interpretation of our results, it is necessary to distinguish between local and
global competition. While the properties of local competition are set by the stochastic
transition rules of the IPS, competition on the global scale is an emergent property of a
spatial model. Building the connection between the local and global levels is the main goal
of spatial ecological modelling.

The model of Neuhauser (1992), which employs only site competition, is the minimal
model of competition on a lattice. In this case, the result of local competition translates
directly to the global outcome. The locally superior population wins. As there is no
possibility for reduced competition at the local level, no co-existence is possible globally,
either. We investigated two different modifications of this model to determine whether they
alter the trivial situation. While the original model was susceptible to analytical study, we
resorted to numerical simulations. In line with the conjecture of Neuhauser (1992), we found
no new phenomenon introducing differences in birth rate with an equal intrinsic lifetime
reproductive ratio between the populations. On the other hand, introducing resource com-
petition on the local level resulted in the emergence of co-existence and evolutionary
branching.

The first modification was motivated by the concept of ruderal strategies (Krebs, 2001, p. 201)

and competition–colonization trade-offs (Bolker and Pacala, 1999; Bolker et al., 2003). Bolker and
Pacala (1999) studied the competition of spatial strategies differing in their dispersal distance
in a community of perennial, clonal plants in a continuous, homogeneous individual-based
point-process model. According to their results, a competitively inferior, globally dispersing
invader can successfully compete with a competitively superior, locally dispersing resident,
which matches the classical competition–colonization trade-off. As all processes disperse
locally in our model, this scenario is not possible. In our model, the analogon of which is
also investigated in Bolker and Pacala (1999), the population with the higher intrinsic lifetime
reproductive ratio wins irrespective of its birth rate. At a fixed intrinsic lifetime reproductive
ratio, the birth rate b cannot be increased without increasing the death rate d also. Thus,
increased birth rate cannot counter low competitiveness.

Note that the irrelevance of birth rate increase is obvious in the mean-field approx-
imation. In this context, the populations affect each other only through the fraction
ρ = 1 − Σnj of empty sites. A population grows if b/d its ratio is larger than 1/ρ. The
population with the highest intrinsic lifetime reproductive ratio has the smallest
equilibrium ρ value, so it can oust any other strategy (cf. Metz et al., 1996).

Note that the general relation between the lifetime reproductive ratio and the growth rate
depends strongly on the way density dependence is implemented in the model. They are
equivalent when they are evaluated at the equilibrium density. However, in general, neither
the comparison of the intrinsic growth rates nor the comparison of the intrinsic lifetime
reproductive ratios (i.e. the quantities evaluated at zero density) predict the outcome of
selection between two populations (Pásztor et al., 1996). It is a peculiarity of the current
model that the intrinsic lifetime reproductive ratio is a good predictor.

Our second modification of the model of Neuhauser (1992) was reduced competition
between different populations. We introduced a new source of local mortality, described by
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a Lotka-Volterra phenomenology and interpreted as resource competition. In this case, the
mean-field approximation already predicts co-existence. Therefore, it is not surprising to
see co-existence in the spatial simulations as well. However, the parameter range enabling
co-existence was considerably narrower for the IPS model than for the mean-field
approximation.

Earlier results suggested that spatial structure reduces the possibility of co-existence
instead of enhancing it. Neuhauser and Pacala (1999) considered a slightly different, but
similar IPS version of the classical Lotka-Volterra competition model with interspecific
competition. They assumed a high-density limit, when fecundity is much greater than mor-
tality, and there are no empty spaces in the habitat. Mortality was density dependent, and
replacement after death was proportional to the respective weighted local frequencies of
the two species. They proved by analytical means that local competitive interactions and
the discreteness of the individuals result in an increase of the parameter region leading to
the extinction of one of the competitors, thus decreasing the region of co-existence. The
competing species spatially segregate in the same parameter region. They could not prove,
but conjectured, that the phenomenon of founder control is completely missing in the
spatial model due to the discreteness of the neighbourhood. Bolker et al. (2003) summarized a
vast body of data obtained from IPS models, moment equations for spatial-point processes,
and metapopulation or patch models. They found in the broad range of these models that if
interspecific competition is nearly as strong as intraspecific competition, the combination of
local competition and the discreteness of the individuals reduces co-existence.

The case of increased inter-population competition also hampers co-existence (Durrett and

Levin, 1997; Iwasa et al., 1998). Increased inter-population competition leads to a disadvantage of
the locally rare type. In the context of mean-field approximation, this results in dependency
on the inital conditions – that is, the initially rare type will disappear. In the spatial case, rare
disadvantage leads to an almost complete spatial segregation of the different types into
distinct spatial domains. The movement of the domain wall eventuates in the unavoidable
extinction of one of the two types. That is, co-existence is not possible either in the
mean-field approximation or in the IPS model with increased inter-population competition.
Gandhi et al. (1998) provides a similar case of complete spatial segregation. However, in this
model, the two populations were equivalent and if their initial densities were equal, the loss
of one of the populations required domain wall diffusion. While competitive exclusion was
also inevitable here, it became extremely slow in this structurally unstable case.

In contrast to these investigations, our model exhibits an advantage of the locally rare
type, since it is advantageous to live in the neighbourhood of a different individual. Con-
sequently, there is a tendency for intra-population segregation, and thus mixing of the
populations. On the other hand, local reproduction and a limited capability for spreading
creates continuous intra-population aggregation. As a result of these conflicting tendencies,
the populations segregate partially. The partial spatial segregation of the populations,
demonstrated in Fig. 6, might suggest reduced inter-population competition favouring
co-existence in the spatial model in contrast with the non-spatial mean-field approximation.

Generically, reduced inter-population competition leads to co-existence, because it
implements a regulating feedback that stabilizes the co-existence. If inter-population
competition is weaker than intra-population competition, then an increase (decrease) in
size of either population results in a decrease (increase) in the growth rate of the same
population. In our model, the partial spatial segregation of the populations weakens this
stabilizing effect. The partial segregation does not exclude, but reduces the possibility of,
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co-existence, similar to the results of Neuhauser and Pacala (1999) and Bolker et al. (2003).
According to our results, although evolutionary branching is possible, the reduced possi-
bility of co-existence restricts the possibility of evolutionary branching. (We are preparing
papers on the relation between population regulation, generic co-existence and limiting
similarity.)

Note that the reduced co-existence due to dispersal limitation contradicts the intuitive
picture, that the deceleration of competitive exclusion due to limited dispersal would
enhance diversity (Huston, 1979).

Generally, the pair approximation exhibits an intermediate behaviour between IPS and
mean-field approximation. In the pair approximation, the non-random distribution of
the populations relative to each other is measured by pair frequencies. However, pair
approximation neglects the higher-order correlations involving more than two individuals.
Accordingly, pair approximation provides a co-existence pattern intermediate between
those of IPS and the mean-field approximation. The pair approximation provides a good
qualitative prediction with respect to the decreased range of co-existence, as it already
takes into account segregation. Nevertheless, we stress that the quantitative prediction
of the pair approximation is very poor. In particular, it fails completely to predict
the difference between the IPS and the mean-field approximation with respect to the
branching threshold. This is partly because this difference is connected to segregation and
clustering, which create large-scale structures pair approximation is unable to take into
account.

The applicability of pair approximation is well accepted for a single population. It
predicts the equilibrium density quite well away from the extinction threshold. However,
the extinction itself corresponds to a ‘second-order phase transition’ with large fluctuations
and long correlations (Marro and Dickman, 1999; Hinrichsen, 2000; B. Oborny, G. Meszéna and G. Szabó, in

prep.). Emergence of the large-scale structure destroys the qualitative predictions of the pair
approximation. For instance, the extinction threshold for a single contact process is λc = 1
for the mean-field approximation, λc = 4/3 for the pair approximation and λc = 1.6488 for
the IPS with d = 2. A similar failure of the pair approximation to predict co-existence
(= extinction) boundaries is not surprising. The even worse performance of pair approx-
imation in an adaptive dynamical context might be related to the fact that the fitness

Fig. 6. Snapshots (20 × 20) of the lattice after relaxation at different competitive mortality rates k.
Cells can be empty (white) or occupied by individuals of population 1 (black) or population 2 (grey).
Parameter values: b0 = 200, d1 = d2 = 1, x1 = 0.1, x2 = −0.1.
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differences are small at a higher order in the vicinity of a singular point. This is especially so
at parameter values corresponding to the transition between ESS and non-ESS.

Note that several studies of the evolutionary and ecological dynamics on a lattice have
used pair approximation as a primary tool (Altmann, 1995; Keeling, 1997; Boots and Sasaki, 1999) and
used numerical experiments mainly for illustrative purposes. The poor performance of the
pair approximation in our simple model caution us not to take such results for granted,
without verifying them first using numerical methods.

While spatiality and limited dispersal decrease the possibility of co-existence in a
homogeneous space, spatial inhomogeneity enhances co-existence. Inhomogeneity
implements a kind of niche segregation with a regulating feedback, stabilizing co-existence
and enabling evolutionary branching (Czárán, 1989; Meszéna et al., 1997; Day, 2000; Cheptou and

Mathias, 2001; Mathias et al., 2001; Mizera and Meszéna, 2003).
The present study successfully applied the adaptive dynamical methodology in an IPS

model and is the first demonstration of evolutionary branching in such a context. All
previous models of adaptive dynamics in a spatial context relied on the separation of time-
scales of spreading and evolution. This was in accordance with the general concept of
invasion fitness (Metz et al., 1992). Several models have investigated adaptive evolution in
the context of numerous patches with migration (Brown and Pavlovic, 1992; Meszéna et al., 1997;

Kisdi and Geritz, 1999; Day, 2000; Geritz and Kisdi, 2000; Mathias et al., 2001; Kisdi, 2002; Mathias and

Kisdi, 2002). In such cases, time-scale separation is ensured by the fast spread of the mutants
in comparison with their growth rate. Then, the spatial distribution of the mutant
equilibrates while it is still rare in every patch. The fate of the mutant is determined by
its overall growth rate after this equilibration. The situation is similar with a limited
range of a continuous environmental gradient (Mizera and Meszéna, 2003; Doebeli and Dieckmann,

2003).
In metapopulations, an infinite number of patches is considered. Since all patches can be

reached on the same time-scale, spreading can still be fast enough for the above assumption
to hold. While Gyllenberg and Metz (2001) and Metz and Gyllenberg (2001) introduced an
effective method of calculating the mutant fitness in this context, Gyllenberg et al. (2002),
Parvinen (2002) and Parvinen et al. (2003) presented applications. The dispersion models of
Mathias et al. (2001) and Mathias and Kisdi (2002) adopt the same assumption.

For an infinite number of patches/sites with limited dispersal – that is, reproduction to
neighbouring sites only – the time-scale of spreading is infinite. Then, the time-scale
separation between the spread and the growth of the mutant population cannot be
assumed. Ferriere and Le Galliard (2001) and Le Galliard et al. (2003) investigated adaptive
dynamics on a random graph. In this case, the success of the pair approximation alleviates
the lack of time-scale separation. As pair approximation performs extremely well on
a random graph lattice, the finite time-scale of the relaxation of the pair frequencies
substitutes for fast spatial relaxation.

As we have seen, pair approximation is far from exact on a square lattice. Moreover, it is
known that even higher-order approximations fail to predict the behaviour of a contact
process (Marro and Dickman, 1999). Consequently, we must conclude that the usual concept of
invasion fitness of a rare mutant fails in the context of IPS models. Invasion is determined
by the spatial spread of a locally abundant mutant. This is fundamentally different from
the invasion of a rare mutant, which is spatially equilibrated already. Fortunately, the applic-
ability of adaptive dynamical concepts and methodology depends only on the existence of
any type of invasion criterion, which is smooth in the resident and mutant strategies.
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Note that the essentially different nature of spatially infinite population models with
limited dispersal manifests already in the dynamics of a single population (Marro and Dickman,

1999; Hinrichsen, 2000; Szabó et al., 2002; B. Oborny et al., in prep.). Metz et al. (2000) discuss the
connection between spatial invasion and local growth rate for populations without an Allee
effect.

Despite these substantial differences, our numerical study demonstrated that techniques
of adaptive dynamics are applicable and useful for interacting particle systems. As a
successful test, we presented the first evolutionary branching on a lattice. We created
a minimal spatial model allowing for co-existence and evolutionary branching. Although, in
accordance with earlier results, limited dispersal hampers co-existence and evolutionary
branching, evolutionary branching is possible.
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APPENDIX

We need rate values Φ and Ψ for all possible ij → i� j� transitions in order to calculate pair-density
derivatives. These can be derived from the rules of cellular automaton in a straightforward way.

Pair transitions may occur due to within-pair events (i.e. which do not depend on sites outside the
pair) and neighbourhood-dependent events. To calculate the overall rate of a within-pair event,
we multiply the appropriate rate by the pair density. To evaluate the overall rate of a neighbourhood-
dependent event, we need triplet densities Tijk. These are defined as the probability of a certain
configuration of three adjacent sites being in states i, j and k. Four triplet configurations (see below)
appear in the calculations.

T I T II T III T IV

k j k k j

i j i j k i i
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Configurations I and II are relevant for the dynamics of adjacent pair densities, while III and IV are
used for the dynamics of diagonal pair densities.

Triplet densities are calculated from pair densities using the so-called symmetric power-2 moment
closure suggested by Law et al. (2003). This closure uses the three pair configuration densities, and all
three edges are weighted equally. Neighbour pair densities are denoted by pa

ij or pd
ij. Densities of pair

configurations outside the Moore-neighbourhood are calculated by mean-ption:

T I
ijk =

1

2 �
pa

ij pa
jk

pj

+
pa

jk pd
ik

pk

+
pa

ij pd
ik

pi

− pi pj pk�
T II

ijk =
1

2 �
Pa

ij pa
jk

pj

+ pa
jk pi + pa

ij pk − pi pj pk�
T III

ijk =
1

2 �
pd

ij pa
jk

pj

+ pa
jk pi + pd

ij pk − pi pj pk�
T IV

ijk =
1

2 �
pd

ij pa
jk

pj

+
pa

jk p
a
ik

pk

+
pd

ij p
a
ik

pi

− pi pj pk�
Having pij and Tijk, one can calculate all Φ and Ψ values from event rates. Table A1 and Table A2

contain all Φ and Ψ values, respectively. As an example, consider the 11 → 01 transition. Φ11 → 01 is a
sum of four terms. The first term expresses decay probability due to natural mortality. The second
term stands for competitive mortality due to intra-specific competition with site j. The third and
fourth terms stand for intra-specific and inter-specific competitive mortality caused by other
neighbouring sites.
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Table A1. Transition rates for adjacent pairs. i, j ∈ {0,1,2}, denoting
empty, occupied by species 1 and species 2 sites, respectively

ij → i� j� Φij → i� j�

00 → 01 (2T I
001 + T II

001) 
b1

4

00 → 02 (2T I
002 + T II

002) 
b2

4

00 → 10 Φ00 → 01

00 → 20 Φ00 → 02

01 → 00 pa
01d1 + (2T I

011 + T II
011)k + (2T I

012 + T II
012)kA12

01 → 11 pa
01

b1

4
+ (2T I

101 + T II
101)

b1

4

01 → 21 (2T I
201 + T II

201)
b2

4

02 → 00 pa
02d2 + (2T I

021 + T II
021)kA12 + (2T I

022 + T II
022)k

02 → 12 (2T I
102 + T II

102)
b1

4

02 → 22 pa
02

b2

4
+ (2T I

202 + T II
202)

b2

4

10 → 00 Φ01 → 00

10 → 11 Φ01 → 11

10 → 12 Φ01 → 21

11 → 01 pa
11d1 + pa

11k + (2T I
111 + T II

111)k + (2T I
211 + T II

211)kA12

11 → 10 Φ11 → 01

12 → 10 pa
12d2 + pa

12kA12 + (2T I
121 + T II

121)kA12 + (2T I
122 + T II

122)k

12 → 02 pa
12d1 + pa

12kA12 + (2T I
112 + T II

112)k + (2T I
122 + T II

122)kA12

20 → 00 Φ02 → 00

20 → 21 Φ02 → 12

20 → 22 Φ02 → 22

21 → 01 Φ12 → 10

21 → 02 Φ12 → 02

22 → 02 pa
22d2 + pa

22k + (2T I
221 + T II

221)kA12 + (2T I
222 + T II

222)k

22 → 20 Φ22 → 02
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Table A2. Transition rates for diagonal pairs. i, j ∈ {0,1,2},
denoting empty, occupied by species 1 and species 2 sites,
respectively

ij → i� j� Ψij → i� j�

00 → 01 (2T III
001 + T IV

001)
b1

4

00 → 02 (2T III
002 + T IV

002)
b2

4

00 → 10 Ψ00 → 01

00 → 20 Ψ00 → 02

01 → 00 pd
01d1 + (2T III

011 + 2T IV
011)k + (2T III

012 + 2T IV
012)kA12

01 → 11 (2T III
101 + 2T IV

101)
b1

4

01 → 21 (2T III
201 + 2T IV

201)
b2

4

02 → 00 pd
02d2 + (2T III

021 + 2T IV
021)kA12 + (2T III

022 + 2T IV
022)k

02 → 12 (2T III
102 + 2T IV

102)
b1

4

02 → 22 (2T III
202 + 2T IV

202)
b2

4

10 → 00 Ψ01 → 00

10 → 11 Ψ01 → 11

10 → 12 Ψ01 → 21

11 → 01 pd
11d1 + (2T III

111 + 2T IV
111)k + (2T III

211 + 2T IV
211)kA12

11 → 10 Ψ11 → 01

12 → 10 pd
12d2 + (2T III

121 + 2T IV
121)kA12 + (2T III

122 + T IV
122)k

12 → 02 pd
12d1 + (2T III

112 + 2T IV
112)k + (2T III

212 + 2T IV
212)kA12

20 → 00 Ψ02 → 00

20 → 21 Ψ02 → 12

20 → 22 Ψ02 → 22

21 → 01 Ψ12 → 10

21 → 02 Ψ12 → 02

22 → 02 pd
22d2 + (2T III

122 + 2T IV
122)kA12 + (2T III

222 + 2T IV
222)k

22 → 20 Ψ22 → 02
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