

Trade-Offs and Specialization: An Adaptive Dynamics Approach

Claus Rueffler,

Tom Van Dooren & Hans Metz

rueffler@rulsfb.leidenuniv.nl

Theoretical Biology Leiden University, The Netherlands

 Most AD models treating evolution of specialization deal with continuous resource distributions or use Levene-type patch models.

- Most AD models treating evolution of specialization deal with continuous resource distributions or use Levene-type patch models.
- Some influential older literature treats a two resource situation with fine grained resources.

- Most AD models treating evolution of specialization deal with continuous resource distributions or use Levene-type patch models.
- Some influential older literature treats a two resource situation with fine grained resources.
- Many empirical systems might best be approximated by this set up (e.g. Crossbills, Black-bellied Seedcrackers, Purple-throated Caribs, scale eating Cichlids).

- Most AD models treating evolution of specialization deal with continuous resource distributions or use Levene-type patch models.
- Some influential older literature treats a two resource situation with fine grained resources.
- Many empirical systems might best be approximated by this set up (e.g. Crossbills, Black-bellied Seedcrackers, Purple-throated Caribs, scale eating Cichlids).
- We re-analyze and extend a model of Wilson & Turelli (1986) using AD approximations.

Theory So Far

6 Verbal model by Simpson (1953).

generalist colonizes two adaptive peaks specialist colonizes 'empty' adaptive peak

Levins 1962

Spatially varying environment:
 Convex Phenotype Set ⇒ Generalist (a)
 Concave Phenotype Set ⇒ Specialist (b)

Levins 1962

- Spatially varying environment:
 Convex Phenotype Set ⇒ Generalist (a)
 Concave Phenotype Set ⇒ Specialist (b)

Lawlor & Maynard Smith 1976, Abrams 1986

- Oerived fitness function from explicit resource consumption and renewal.
- Density- and
 frequency-dependent selection
 ⇒ coexistence.
- 6 Character displacement of ESSs on two convex phenotype sets.

Wilson & Turelli 1986

- 5 Two-alleles on one locus code for two consumption rates.
- 6 Homozygote A_1A_1 well adapted to resource 1 but poor for resource 2.
- 6 A₁A₂ and A₂A₂ slightly better for resource 2 but much worse for resource 1.
- Stable polymorphism with underdominance

Deviations from population genetical equilibrium shift resource abundances to favor rare allele.

6 All approaches predict generalist for convex phenotype set.

- All approaches predict generalist for convex phenotype set.
- 6 For concave phenotype set picture less clear.

- All approaches predict generalist for convex phenotype set.
- 6 For concave phenotype set picture less clear.
- 6 Are ESSs attainable?

- All approaches predict generalist for convex phenotype set.
- 6 For concave phenotype set picture less clear.
- 6 Are ESSs attainable?
- O polymorphisms arise if mutational steps are small?

- All approaches predict generalist for convex phenotype set.
- 6 For concave phenotype set picture less clear.
- 6 Are ESSs attainable?
- O polymorphisms arise if mutational steps are small?
- 6 Do polymorphisms arise in all foraging traits?

- All approaches predict generalist for convex phenotype set.
- 6 For concave phenotype set picture less clear.
- 6 Are ESSs attainable?
- O polymorphisms arise if mutational steps are small?
- 6 Do polymorphisms arise in all foraging traits?
- 6 How does foraging behavior influence evolution?

The Foraging Process

 $\alpha \frac{eRpf}{1 + eRp(t_p + ft_m)}$

population growth rate

- e : search efficiency
- R : resource density
- p : probability of attack
- f : capture success
- t_p : pursuit time
- t_m : manipulation time
 - α : conversion factor of prey into offspring

The Foraging Process II

 $\alpha_1 e_1 R_1 p_1 f_1 + \alpha_2 e_2 R_2 p_2 f_2$ $1 + e_1 R_1 p_1 (t_{p1} + f_1 t_{m1}) + e_2 R_2 p_2 (t_{p2} + f_2 t_{m2})$

population growth rate on two resources

- e : search efficiency
- R : resource density
- p : probability of attack
- f : capture success
- t_p : pursuit time
- t_m : manipulation time
 - α : conversion factor of prey into offspring

The Foraging Process III

Without prey choice $(p_1 = 1 = p_2)$ and negligible pursuit time t_p , population growth rate simplifies to:

$$\frac{\alpha_1 e_1 R_1 + \alpha_2 e_2 R_2}{1 + e_1 R_1 t_{m1} + e_2 R_2 t_{m2}}$$

$$= \mathbf{t}_{\mathbf{s}}(\alpha_1 e_1 R_1 + \alpha_2 e_2 R_2)$$

population growth rate on two resources

- e : search efficiency
- R : resource density
- t_m : manipulation time
 - α : conversion factor of prey into offspring
- t_s : search time

Resource Dynamics

6 Resource abundance R_i derived from chemostat dynamics and in quasi steady state:

$$\hat{R}_i = \frac{b_i}{d_i + e_i p_i f_i t_s N}$$

Resource Dynamics

6 Resource abundance R_i derived from chemostat dynamics and in quasi steady state:

$$\hat{R}_i = \frac{b_i}{d_i + e_i p_i f_i t_s N}$$

6 Note:

1) e_i, p_i and f_i influence resource abundance R̂_i explicit
 2) t_{pi}, t_{mi} and α_i influence R̂_i only implicit via consumer population size N and search time t_s and therefore both resources in the same way.

The Trade-Off

- Foraging success is determined by morphological and physiological traits.
- Predators face a trade-off
 ⇒ they cannot be specialized on two prey-types.
- Evolution proceeds along the trade-off curve
 - \Rightarrow one-dimensional trait space, parameterized in $\theta \in [0, 1]$
- 6 We concentrate on trade-offs in: \rightarrow in manipulation time t_m \rightarrow in capture success f

Trade-Off in Capture Success f

- Weak trade-off: generalist is CSS.
- Very strong trade-off: only populations close to specialist 2 BP evolve towards it. 0.8 Otherwise specialization. Coexistence with other 0.6 **Branching Point** CSS specialist still possible. generalist 0.4 Same result for trade-off in search efficiency e. 0.2 specialist 1 () 0 0.2 0.8 12 1.4 0.40.6 linear weak strong

Z

Trade-Off in Manipulation Time t_m

- No frequency-dependence, no coexistence.
- Strong trade-off: both specialists are CSS. Realized CSS depends on initial conditions.
- Weak trade-off: generalist θ specialist 2 is CSS 0.8 Same result for trade-off in pursuit time t_p and conver-0.6 Repellor CSS sion efficiency α . generalist 0.4 0.2 specialist 1 0 Z 0.20.8 1.2 0.40.6 1.4 0 linear weak strong

6 Curvature of trade-off and the evolving trait are decisive for long term evolution.

- 6 Curvature of trade-off and the evolving trait are decisive for long term evolution.
- ⁶ Traits with one-dimensional feedback loop do not allow for coexistence: t_m, t_p and α .

- 6 Curvature of trade-off and the evolving trait are decisive for long term evolution.
- ⁶ Traits with one-dimensional feedback loop do not allow for coexistence: t_m, t_p and α .
- ⁶ Traits with two-dimensional feedback loop can become polymorphic through evolutionary branching: e_i and f_i .

- 6 Curvature of trade-off and the evolving trait are decisive for long term evolution.
- 5 Traits with one-dimensional feedback loop do not allow for coexistence: t_m, t_p and α .
- ⁶ Traits with two-dimensional feedback loop can become polymorphic through evolutionary branching: e_i and f_i .
- 6 Caveat: so far no prey choice is included ($p_1 = 1 = p_2$). Predators attack prey regardless of their performance.

- 6 Curvature of trade-off and the evolving trait are decisive for long term evolution.
- ⁶ Traits with one-dimensional feedback loop do not allow for coexistence: t_m, t_p and α .
- ⁶ Traits with two-dimensional feedback loop can become polymorphic through evolutionary branching: e_i and f_i .
- 6 Caveat: so far no prey choice is included ($p_1 = 1 = p_2$). Predators attack prey regardless of their performance.
- Extension: including diet choice applying optimal foraging theory.

Optimal Diet Choice

- Prey profitability (fitness gain per investment of time) conditional on genetic trait.
- Zero-one rule:
 A prey type is either always or never taken.

Extended PIPs: Capture Success

- ⁶ Fitness function is non-differentiable where prey switch takes place.
- Mutant choice boundaries indicate prey switch of mutant.

Trade-Off in Capture Success II

- 6 If both resources are chosen \implies Equals scenario without diet choice
- If only one resource is chosen \implies Specialization

Extended PIPs: Manipulation Time

Or Polymorphisms can emerge through small mutational steps at non-generic branching points.

Trade-Off in Manipulation Time II

- 6 If both resources are chosen \implies Equals scenario without diet choice
- If only one resource is chosen \implies Specialization

Foraging Inaccuracy

- In nature no zero-one rule.
- Foraging inaccuracy and incomplete information "smoothens" zero-one rule.
- Fitness function becomes differentiable.

Trade-Off in Manipulatio Time

 \implies Increasing Accuracy

– p.24

6 Convex phenotype sets necessary but not sufficient for the evolution of polymorphisms.

- 6 Convex phenotype sets necessary but not sufficient for the evolution of polymorphisms.
- 6 Prey choice facilitates coexistence and the evolution of polymorphisms.

- 6 Convex phenotype sets necessary but not sufficient for the evolution of polymorphisms.
- Prey choice facilitates coexistence and the evolution of polymorphisms.
- Which specific type of polymorphism evolves under disruptive selection depends on genetic architecture.

- 6 Convex phenotype sets necessary but not sufficient for the evolution of polymorphisms.
- Over the second seco
- 6 Which specific type of polymorphism evolves under disruptive selection depends on genetic architecture.
- 6 In higher dimensions prey choice can prevent branching.