Invasion Fitness near Evolutionary Singularities

Michel Durinx

Hans Metz Géza Meszéna

durinx@rulsfb.leidenuniv.nl

Instituut Biologie Leiden Leiden University, The Netherlands

- mathematically consistent framework for considering long-term evolution
- study evolutionary outcomes of invasion/replacement dynamics
- model evolution by accumulating diversity

evolution driven by repeated establishment of mutants

 individuals have a strategy vector, say X, that describes some life-history parameters

- individuals have a strategy vector, say X,
 that describes some life-history parameters
- offspring inherits this strategy (quite) perfectly

- individuals have a strategy vector, say X,
 that describes some life-history parameters
- offspring inherits this strategy (quite) perfectly
- small mutations $(Y = X + \Delta X)$ \Rightarrow near-continuous evolution.

- individuals have a strategy vector, say X,
 that describes some life-history parameters
- offspring inherits this strategy (quite) perfectly
- small mutations $(Y = X + \Delta X)$ \Rightarrow near-continuous evolution.
- rare mutation events: equilibrium reached before next mutation event ⇒ ecological/evolutionary timescales separated

evolution driven by repeated establishment of mutants

- individuals have a strategy vector, say X,
 that describes some life-history parameters
- offspring inherits this strategy (quite) perfectly
- small mutations $(Y = X + \Delta X)$ \Rightarrow near-continuous evolution.
- rare mutation events: equilibrium reached before next mutation event ⇒ ecological/evolutionary timescales separated
- rare mutants in a large, well-mixed resident population

 \Rightarrow invaders influence residents nor invaders,

 \Rightarrow stochasticity may slow down evolution

 $s_X(Y) \Leftrightarrow$ the long-term average *PC* growthrate of a rare *Y*-type invader in an *X*-resident population at equilibrium

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_X(Y) \Leftrightarrow$ the long-term average *PC* growthrate of a rare *Y*-type invader in an *X*-resident population at equilibrium

 $= \lim_{T \to \infty}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_{X}(Y) \Leftrightarrow \text{ the long-term average } PC \text{ growthrate} \\ \text{of a rare } Y \text{-type invader in} \\ \text{an } X \text{-resident population at equilibrium} \\ = \lim_{T \to \infty} \frac{\int_{0}^{T} dt}{T}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_{X}(Y) \Leftrightarrow \text{ the long-term average } PC \text{ growthrate} \\ \text{of a rare } Y \text{-type invader in} \\ \text{an } X \text{-resident population at equilibrium} \\ = \lim_{T \to \infty} \frac{\int_{0}^{T} \frac{1}{m} \frac{dm}{dt} dt}{T}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_{X}(Y) \Leftrightarrow \text{ the long-term average } PC \text{ growthrate} \\ \text{of a rare } Y \text{-type invader in} \\ \text{an } X \text{-resident population at equilibrium} \\ = \lim_{T \to \infty} \lim_{m \to 0} \frac{\int_{0}^{T} \frac{1}{m} \frac{dm}{dt} dt}{T}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_{X}(Y) \doteq \text{ the long-term average } PC \text{ growthrate} \\ \text{ of a rare } Y \text{-type invader in} \\ \text{ an } X \text{-resident population at equilibrium} \\ = \lim_{T \to \infty} \lim_{m \to 0} \frac{\int_{0}^{T} \frac{1}{m} \frac{dm}{dt} | _{n=\hat{n}=\frac{r_{X}}{a(X,X)}}}{T}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_{X}(Y) \Leftrightarrow \text{ the long-term average } PC \text{ growthrate} \\ \text{of a rare } Y \text{-type invader in} \\ \text{an } X \text{-resident population at equilibrium} \\ = \lim_{T \to \infty} \lim_{m \to 0} \frac{\int_{0}^{T} r_{Y} - a(Y, X)n - a(Y, Y)m}{T} \Big|_{n=\frac{r_{X}}{a(X, X)}}$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $\begin{aligned} \mathbf{s}_{\boldsymbol{X}}(\boldsymbol{Y}) & \doteq \text{ the long-term average } PC \text{ growthrate} \\ & \text{of a rare } \boldsymbol{Y}\text{-type invader in} \\ & \text{an } \boldsymbol{X}\text{-resident population at equilibrium} \\ & = \lim_{T \to \infty} \frac{\int_{0}^{T} r_{\boldsymbol{Y}} - a(\boldsymbol{Y}, \boldsymbol{X}) n | \mathbf{d}t}{T} \\ \end{aligned}$

lim

 $T \rightarrow \infty$

=

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_X(Y) \Leftrightarrow$ the long-term average *PC* growthrate of a rare *Y*-type invader in an *X*-resident population at equilibrium

$$\frac{\int_0^T r_{\boldsymbol{Y}} - r_{\boldsymbol{X}} \frac{a(\boldsymbol{Y}, \boldsymbol{X})}{a(\boldsymbol{X}, \boldsymbol{X})} \mathrm{d}t}{T}$$

Example (LV):
$$\frac{1}{n} \frac{dn}{dt} = r_X - a(X, X)n - a(X, Y)m$$
$$\frac{1}{m} \frac{dm}{dt} = r_Y - a(Y, X)n - a(Y, Y)m$$

 $s_X(Y) \Leftrightarrow \text{the long-term average } PC \text{ growthrate}$ of a rare Y-type invader in an X-resident population at equilibrium

$$= r_{\boldsymbol{Y}} - r_{\boldsymbol{X}} \frac{a(\boldsymbol{Y}, \boldsymbol{X})}{a(\boldsymbol{X}, \boldsymbol{X})}$$

•
$$X^*$$
 evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$ • resident X and mutant Y near singularity:
 - $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$
- resident X and mutant Y near singularity: $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$
- Taylor expansion around singularity X^* : $s_X(Y) = \alpha + \beta_1 U + \beta_0 V +$

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$
- resident X and mutant Y near singularity: $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$
- Taylor expansion around singularity X^* : $s_X(Y) = \alpha + \beta_1 U + \beta_0 V + U^T C_{11} U + 2U^T C_{10} V + V^T C_{00} V + o(\varepsilon^2)$

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$
- resident X and mutant Y near singularity: $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$
- Taylor expansion around singularity X^* : $s_X(Y) = \alpha + \beta_1 U + \beta_0 V + U^T C_{11} U + 2U^T C_{10} V + V^T C_{00} V + o(\varepsilon^2)$

•
$$C_{11} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial X^2}$$
 $C_{10} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial X \partial Y}$ $C_{00} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial Y^2}$

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$
- resident X and mutant Y near singularity: $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$
- Taylor expansion around singularity X^* : $s_X(Y) = \alpha + \beta_1 U + \beta_0 V + U^T C_{11} U + 2U^T C_{10} V + V^T C_{00} V + o(\varepsilon^2)$
 - $C_{11} = \frac{1}{2} \frac{\partial^2 s_X(Y)}{\partial X^2}$ $C_{10} = \frac{1}{2} \frac{\partial^2 s_X(Y)}{\partial X \partial Y}$ $C_{00} = \frac{1}{2} \frac{\partial^2 s_X(Y)}{\partial Y^2}$ • normal form \Rightarrow classification (1dim strategies)

the 8-fold classification of 1D singularities C₀₀ C_{11}

the 8-fold classification of 1D singularities

- X^* evolutionary singular strategy $\equiv \frac{\partial s_X(Y)}{\partial Y}\Big|_{Y=X^*} = 0$
- resident X and mutant Y near singularity: $X = X^* + U$ $Y = X^* + V$ $[U, V = o(\varepsilon)]$
- Taylor expansion around singularity X^* : $s_X(Y) = \alpha + \beta_1 U + \beta_0 V + U^T C_{11} U + 2U^T C_{10} V + V^T C_{00} V + o(\varepsilon^2)$
 - $C_{11} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial X^2}$ $C_{10} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial X \partial Y}$ $C_{00} = \frac{1}{2} \frac{\partial^2 s_{\mathbb{X}}(Y)}{\partial Y^2}$ • normal form \Rightarrow classification

- Easy case: 2-resident Lotka-Volterra system $\{X_1, X_2\} \equiv \mathbb{X}$ $s_{\mathbb{X}}(Y) = \frac{s_{X_1}(Y)s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}{s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}$

- Easy case: 2-resident Lotka-Volterra system $\{X_1, X_2\} \equiv \mathbb{X}$ $s_{\mathbb{X}}(Y) = \frac{s_{X_1}(Y)s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}{s_{X_2}(X_1) + s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}$

Difficult case: nearly any other population model

- Easy case: 2-resident Lotka-Volterra system $\{X_1, X_2\} \equiv \mathbb{X}$ $s_{\mathbb{X}}(Y) = \frac{s_{X_1}(Y)s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}{s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}$
- Difficult case: nearly any other population model
- 2-resident Lotka-Volterra system, near singularity: $s_{\mathbb{X}}(\boldsymbol{Y}) = \boldsymbol{V}^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{V} + 2\overline{\boldsymbol{U}}^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{V} + \overline{\boldsymbol{U}}^{\mathsf{T}}\mathsf{C}_{11}\overline{\boldsymbol{U}} - \boldsymbol{\Delta}^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{\Delta} + 2\boldsymbol{\Delta}^{\mathsf{T}}\mathsf{C}_{10}(\overline{\boldsymbol{U}} - \boldsymbol{V})\frac{\boldsymbol{\Delta}^{\mathsf{T}}(\mathsf{C}_{00} + \mathsf{C}_{10}^{\mathsf{T}})\overline{\boldsymbol{U}}}{\boldsymbol{\Delta}^{\mathsf{T}}(\mathsf{C}_{10})\boldsymbol{\Delta}} + o(\varepsilon^{2})$

- Easy case: 2-resident Lotka-Volterra system $\{X_1, X_2\} \equiv \mathbb{X}$ $s_{\mathbb{X}}(Y) = \frac{s_{X_1}(Y)s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}{s_{X_2}(X_1) + s_{X_2}(Y)s_{X_1}(X_2) - s_{X_1}(X_2)s_{X_2}(X_1)}$
- Difficult case: nearly any other population model
- 2-resident Lotka-Volterra system, near singularity: $s_{\mathbb{X}}(Y) = V^{\mathsf{T}}\mathsf{C}_{00}V + 2\overline{U}^{\mathsf{T}}\mathsf{C}_{10}V + \overline{U}^{\mathsf{T}}\mathsf{C}_{11}\overline{U} - \Delta^{\mathsf{T}}\mathsf{C}_{00}\Delta$ $+ 2\Delta^{\mathsf{T}}\mathsf{C}_{10}(\overline{U} - V)\frac{\Delta^{\mathsf{T}}(\mathsf{C}_{00} + \mathsf{C}_{10}^{\mathsf{T}})\overline{U}}{\Delta^{\mathsf{T}}(\mathsf{C}_{10})\Delta} + o(\varepsilon^{2})$ where $\overline{U} \equiv \frac{U_{1}+U_{2}}{2}$ $\Delta \equiv \frac{U_{1}-U_{2}}{2}$

At singularities: generic unpleasantness

• at $11h + \varepsilon$, Hans Metz told that away from $\frac{\partial s}{\partial Y} = 0$: directional selection, invasion implies fixation, a Canonical Estimate, everybody happy

At singularities: generic unpleasantness

- at $11h + \varepsilon$, Hans Metz told that away from $\frac{\partial s}{\partial Y} = 0$: directional selection, invasion implies fixation, a Canonical Estimate, everybody happy
- near singularities (= zeros of the fitness gradient): bizarreness rules

At singularities: generic unpleasantness

- at $11h + \varepsilon$, Hans Metz told that away from $\frac{\partial s}{\partial Y} = 0$: directional selection, invasion implies fixation, a Canonical Estimate, everybody happy
- near singularities (= zeros of the fitness gradient): bizarreness rules

- all N residents and all mutants are close to X^*

 $\begin{cases} \Xi = \mathbf{X}^* + \mathbf{U}_i = \mathbf{X}^* + \varepsilon \boldsymbol{\xi}_i & (i = 1, 2, \dots, N) \\ \mathbf{Y} = \mathbf{X}^* + \mathbf{V} & (\text{small } \mathbf{V}) \end{cases}$

- all N residents and all mutants are close to X^*

 $\begin{cases} \Xi = \mathbf{X}^* + \mathbf{U}_i = \mathbf{X}^* + \varepsilon \boldsymbol{\xi}_i & (i = 1, 2, \dots, N) \\ \mathbf{Y} = \mathbf{X}^* + \mathbf{V} & (\text{small } \mathbf{V}) \\ \Rightarrow \text{ we can scale the system with the parameter } \varepsilon \end{cases}$

basic idea:

- all N residents and all mutants are close to \boldsymbol{X}^*

 $\begin{cases} \Xi = \mathbf{X}^* + \mathbf{U}_i = \mathbf{X}^* + \varepsilon \boldsymbol{\xi}_i & (i = 1, 2, \dots, N) \\ \mathbf{Y} = \mathbf{X}^* + \mathbf{V} & (\text{small } \mathbf{V}) \end{cases}$

- basic idea:
 - sensible since directional derivatives exist,

- all N residents and all mutants are close to \boldsymbol{X}^*

 $\begin{cases} \Xi = \mathbf{X}^* + \mathbf{U}_i = \mathbf{X}^* + \varepsilon \boldsymbol{\xi}_i & (i = 1, 2, \dots, N) \\ \mathbf{Y} = \mathbf{X}^* + \mathbf{V} & (\text{small } \mathbf{V}) \end{cases}$

- basic idea:
 - sensible since directional derivatives exist,
 - useful if it removes the mathematical singularity

- all N residents and all mutants are close to \boldsymbol{X}^*

 $\begin{cases} \Xi = \mathbf{X}^* + \mathbf{U}_i = \mathbf{X}^* + \varepsilon \boldsymbol{\xi}_i & (i = 1, 2, \dots, N) \\ \mathbf{Y} = \mathbf{X}^* + \mathbf{V} & (\text{small } \mathbf{V}) \end{cases}$

- basic idea:
 - sensible since directional derivatives exist,
 - useful if it removes the mathematical singularity
- normal form ⇒ try proof for very general systems

Physiologically Structured Populations

birth rate vector b: steady birth rate in all possible birth states environmental condition I: as far as influenced by interaction. Individuals are independent for a given I next-generation matrix $L(X, I)_{lm}$: expected number of offspring with birth state *l* from an X-type parent born with state m feedback matrix $G(\boldsymbol{X}, \boldsymbol{I})_{lm}$: the life-time contribution to the $l^{\rm th}$ component of Iby an X-type individual born in state m

Physiologically Structured Populations

birth rate vector b: steady birth rate in all possible birth states environmental condition I: as far as influenced by interaction. Individuals are independent for a given I next-generation matrix $L(X, I)_{lm}$: expected number of offspring with birth state *l* from an X-type parent born with state m feedback matrix $G(X, I)_{lm}$: the life-time contribution to the $l^{\rm th}$ component of Iby an X-type individual born in state m

 $\mathbf{s}_{\mathbb{X}}(\boldsymbol{Y}) = \log \lambda(\mathbf{L}(\boldsymbol{Y}, \boldsymbol{I}(\mathbb{X}))) / T_f(\boldsymbol{Y}, \boldsymbol{I}(\mathbb{X})) + o(\varepsilon^2)$

• monomorphic fitness near singularity: $s_{X}(Y) = U^{T}C_{11}U + 2U^{T}C_{10}V + V^{T}C_{00}V + o(\varepsilon^{2})$

- monomorphic fitness near singularity: $s_{X}(Y) = U^{T}C_{11}U + 2U^{T}C_{10}V + V^{T}C_{00}V + o(\varepsilon^{2})$
- polymorphic fitness for $\mathbb{X} \equiv \{X_1, X_2, \dots, X_N\}$: $s_{\mathbb{X}}(Y) = \theta + 2 \left(\sum_i p_i U_i^{\mathsf{T}}\right) \mathsf{C}_{10} V + V^{\mathsf{T}} \mathsf{C}_{00} V + o(\varepsilon^2)$ where

 $\begin{pmatrix} p_1 \\ \vdots \\ p_N \\ \theta \end{pmatrix} = \begin{pmatrix} 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_1 \\ \vdots \\ -\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_N \\ 1 \end{pmatrix}$

- monomorphic fitness near singularity: $s_{X}(Y) = U^{T}C_{11}U + 2U^{T}C_{10}V + V^{T}C_{00}V + o(\varepsilon^{2})$
- polymorphic fitness for $\mathbb{X} \equiv \{X_1, X_2, \dots, X_N\}$: $s_{\mathbb{X}}(Y) = \theta + 2 \left(\sum_i p_i U_i^{\mathsf{T}}\right) \mathsf{C}_{10} V + V^{\mathsf{T}} \mathsf{C}_{00} V + o(\varepsilon^2)$ where

 $\begin{pmatrix} p_1 \\ \vdots \\ p_N \\ \theta \end{pmatrix} = \begin{pmatrix} 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_1 \\ \vdots \\ -\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_N \\ 1 \end{pmatrix}$

• multiple birthstates: p_i vector, but $(p_i)_l = (p_i)_o + o(1)$

- monomorphic fitness near singularity: $s_{X}(Y) = U^{T}C_{11}U + 2U^{T}C_{10}V + V^{T}C_{00}V + o(\varepsilon^{2})$
- polymorphic fitness for $\mathbb{X} \equiv \{X_1, X_2, \dots, X_N\}$: $s_{\mathbb{X}}(Y) = \theta + 2 \left(\sum_i p_i U_i^{\mathsf{T}}\right) \mathsf{C}_{10} V + V^{\mathsf{T}} \mathsf{C}_{00} V + o(\varepsilon^2)$ where

 $\begin{pmatrix} p_1 \\ \vdots \\ p_N \\ \theta \end{pmatrix} = \begin{pmatrix} 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_1 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ 2\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & \cdots & 2\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{10}\boldsymbol{U}_N & 1 \\ 1 & \cdots & 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} -\boldsymbol{U}_1^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_1 \\ \vdots \\ -\boldsymbol{U}_N^{\mathsf{T}}\mathsf{C}_{00}\boldsymbol{U}_N \\ 1 \end{pmatrix}$

• multiple birthstates: p_i vector, but $(p_i)_l = (p_i)_o + o(1)$

invertibility of E*: m-dim strategy $\rightarrow N \leq m+1, \ldots$

Discussion

• use, for any model: monomorphic $s_X(Y)$ \Rightarrow fit a Lotka-Volterra model \Rightarrow polymorphic invasion fitness (up to $o(\varepsilon^2)$)

for unfolding codim-1 bifurcations, *o*(ε³) is needed:
 e.g. (scalar):

