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Individuals have a strategy vector, say X,
that describes some life-history parameters

offspring inherits this strategy (quite) perfectly

small mutations (Y = X + AX)
= near-continuous evolution.

rare mutation events:
equilibrium reached before next mutation event

= ecological/evolutionary timescales separated

rare mutants in a large, well-mixed
resident population

= Invaders Influence residents nor invaders,
= stochasticity may slow down evolution
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Monomorphic fitness near singularities

Osx (Y)
oY ly_x-
resident X and mutant Y near singularity:
X=X*"+U Y=X"+V  [U,V =o(e)]

Taylor expansion around singularity X™:
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Easy case:
2-resident Lotka-Volterra system {X;, Xo} =X
sx(Y) =
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Difficult case: nearly any other population model

2-resident Lotka-Volterra system, near singularity:
SX(Y) = V'CypV + QﬁTCmV -+ ﬁTCuﬁ — A'CypoA

- A'(Coo + CI)U
+2A7C1(TU - V) (ASE)C )1AO)

where U= A=4U0

+ 0(52)
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= = X*+U = X*'+¢¢ (i=1,2,...,N)
Y = X'+V (small V)
— we can scale the system with the parameter ¢
basic idea:

sensible since directional derivatives exist,
useful If it removes the mathematical singularity

normal form =- try proof for very general systems
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steady birth rate in all possible birth states

environmental condition I:
as far as influenced by interaction. Individuals are

Independent for a given I

next-generation matrix L( X, I);,,:
expected number of offspring with birth state |
from an X-type parent born with state m

feedback matrix G(X, I);,:
the life-time contribution to the ** component of I
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sx(Y) = log A(L(Y  I(X))) / /(Y . I(X)) + o(&?)
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monomorphic fitness near singularity:
Sx (Y) =U'C1U +2U'C1gV + V' CyoV + 0(62)

polymorphic fitness for X = { X3, Xo, ..., Xy}
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multiple birthstates: p; vector, but (p;); = (p;)o + o(1)
iInvertibility of E*: m-dim strategy — N <m +1, ...




Discussion

use, for any model: monomorphic sx(Y)

= fit a Lotka-Volterra model
= polymorphic invasion fitness (up to o(e?))

for unfolding codim-1 bifurcations, o(e?) is needed:

e.g. (scalar):
AN

se(y) = (z — y)(x — 2y)
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