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Adaptive Dynamics: evolution driven by repeated
establishment of mutants

• mathematically consistent framework for
considering long-term evolution

• study evolutionary outcomes of
invasion/replacement dynamics

• model evolution by accumulating diversity
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Adaptive Dynamics: evolution driven by repeated
establishment of mutants

• individuals have a strategy vector, say X,
that describes some life-history parameters

• offspring inherits this strategy (quite) perfectly
• small mutations (Y = X + ∆X)

⇒ near-continuous evolution.
• rare mutation events:

equilibrium reached before next mutation event
⇒ ecological/evolutionary timescales separated

• rare mutants in a large, well-mixed
resident population

⇒ invaders influence residents nor invaders,
⇒ stochasticity may slow down evolution
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The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

∫ T

0
dt

T

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

∫ T

0

1

m

dm

dt
dt

T

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

lim
m→0

∫ T

0

1

m

dm

dt
dt

T

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

lim
m→0

∫ T

0

1

m

dm

dt
dt

T
n=n̂=

r
X

a(X,X)

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

lim
m→0

∫ T

0
rY − a(Y ,X)n − a(Y ,Y )m dt

T
n=

r
X

a(X,X)

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

∫ T

0
rY − a(Y ,X)n dt

T
n=

r
X

a(X,X)

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= lim
T→∞

∫ T

0
rY − rX

a(Y ,X)

a(X,X)
dt

T

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



The invasion fitness function

Example (LV):
1

n

dn

dt
= rX − a(X,X)n − a(X,Y )m

1

m

dm

dt
= rY − a(Y ,X)n − a(Y ,Y )m

sX(Y ) + the long-term average PC growthrate
of a rare Y -type invader in
an X-resident population at equilibrium

= rY − rX
a(Y ,X)

a(X,X)

Invasion Fitness near Evolutionary Singularities – p.4/16



Monomorphic fitness near singularities

• X∗ evolutionary singular strategy ≡
∂sX (Y )

∂Y Y =X∗

= 0

• resident X and mutant Y near singularity:
X = X∗+ U Y = X∗+ V [U ,V = o(ε)]

• Taylor expansion around singularity X∗:
sX(Y ) = �α +�

��β1U +�
��β0V +

U TC11U + 2U TC10V + V TC00V + o(ε2)

• C11 = 1
2

∂2
sX(Y )

∂X2 C10 = 1
2

∂2
sX(Y )

∂X∂Y C00 = 1
2

∂2
sX(Y )

∂Y 2

• normal form ⇒ classification (1dim strategies)
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the 8-fold classification of 1D singularities

C11

C00
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the 8-fold classification of 1D singularities

attr.
rep.

invadable
noninvadable

CSS CSS

CSSEden

branchingrepeller

repellerrepeller
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Polymorphic Fitness Functions

• Easy case:
2-resident Lotka-Volterra system {X1,X2} ≡ X

sX(Y ) =
sX1

(Y )sX2
(X1) + sX2

(Y )sX1
(X2) − sX1

(X2)sX2
(X1)

sX2
(X1) + sX1

(X2) − sX1
(X2)sX2

(X1)

• Difficult case: nearly any other population model

• 2-resident Lotka-Volterra system, near singularity:

sX(Y ) = V TC00V + 2U
T

C10V + U
T

C11U −∆
TC00∆

+ 2∆TC10(U − V )
∆

T(C00 + CT

10)U

∆
T(C10)∆

+ o(ε2)

where U ≡ U1+U2

2 ∆ ≡ U1−U2

2
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At singularities: generic unpleasantness

• at 11h + ε, Hans Metz told that away from ∂s

∂Y = 0:
directional selection, invasion implies fixation,
a Canonical Estimate, everybody happy

• near singularities (≡ zeros of the fitness gradient):
bizarreness rules

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

-2 0 2
-2

0

2

0 1 2 3
0

1

2

3

0 1
0

1
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Directional blowup

• all N residents and all mutants are close to X∗

{

Ξ = X∗+ Ui = X∗+ εξi (i = 1, 2, . . . , N)

Y = X∗+ V (small V )

⇒ we can scale the system with the parameter ε

• basic idea:
• sensible since directional derivatives exist,
• useful if it removes the mathematical singularity

• normal form ⇒ try proof for very general systems
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Physiologically Structured Populations

birth rate vector b:
steady birth rate in all possible birth states

environmental condition I:
as far as influenced by interaction. Individuals are
independent for a given I

next-generation matrix L(X, I)lm:
expected number of offspring with birth state l

from an X-type parent born with state m

feedback matrix G(X, I)lm:

the life-time contribution to the lth component of I
by an X-type individual born in state m

sX(Y ) = log λ( L(Y , I(X)) ) / Tf (Y , I(X)) + o(ε2)
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N -species normal form

• monomorphic fitness near singularity:
sX(Y ) = U TC11U + 2U TC10V + V TC00V + o(ε2)

• polymorphic fitness for X ≡ {X1,X2, . . . ,XN}:
sX(Y ) = θ + 2 (

∑

i piUi
T) C10V + V TC00V + o(ε2)

where










p1
...

pN

θ











=











2U1
TC10U1 · · · 2UN

TC10U1 1
... . . . ...

...
2U1

TC10UN · · · 2UN
TC10UN 1

1 · · · 1 0











−1 









−U1
TC00U1
...

−UN
TC00UN

1











• multiple birthstates: pi vector, but (pi)l = (pi)o + o(1)

• invertibility of E∗: m-dim strategy → N ≤ m + 1, . . .

Invasion Fitness near Evolutionary Singularities – p.12/16



N -species normal form

• monomorphic fitness near singularity:
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Discussion

• use, for any model: monomorphic sX(Y )
⇒ fit a Lotka-Volterra model
⇒ polymorphic invasion fitness (up to o(ε2))

• for unfolding codim-1 bifurcations, o(ε3) is needed:
e.g. (scalar):

sx(y) = (x − y)(x − 2y)
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