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Three systems random, genetic, and environmental

morph determination
(combinations are possible)

® Summary and recapitulation of important ideas in the field

¢ Sketch unifying theory of the evolution of genetic vs. random morph determination

— based on evolutionary stability and evolutionary branching in different trait spaces
— disruptive selection and related processes as unifying theme



Phenotypic polymorphism

Basic idea: Some advantage from specialization Levins, 1968, Changing Environments

® Levene (1953) STRATEGIES OF ADAPTATION
— multiple-niche polymorphism hienvl il

® Cohen (1966)

— bet-hedging in fluctuating environments
® Fisher (1930), Shaw and Mohler (1953)
— frequency-dependent selection

® West-Eberhard (1979)
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Traditional views on morph determination

E. B. Ford, 1971, Ecological Genetics, 3rd ed.

CHAPTER SIX

The Theory of Genetic
Polymorphism

The work on jola jurti cribed in the last two chapters aimed

at analysing the evolution of polygenic characters in wild populations.
It is necessary also to consider how those controlled by major genes
can be used for similar evolutionary studies. This can in fact be done in
all instances of genetic polymorphism. A strict definition of that situa-
tion had proved a fundamental necessity. It was provided in the follow-
ing terms: @pe_m_pgbmplmm_m_thc_omm_c:_mgmme
same locality of two or more discontinuous forms of a species in such
proportions that the rarest of them cannot be maintained merely by
recurrent mutation (Ford, 1940a).

The implications of this definition must be assessed. Evidently it
excludes geographical races, as well as continuous variation controlled
by polygenes and falling within a curve of normal distribution, as with
human height. It excludes also the segregation of rare recessives, or
heterozygous conditions, eliminated by selection and maintained only
by mutation-pressure. Thus the occurrence of Huntington’s Chorea
does not constitute a polymorphism in Man.

mmm)  Discontinuous variation, which is nearly always genetic (Ford, 1965,

pp. 11-12), must be maintained by some form of switch-mechanism,
to which certain general conclusions are applicable whatever the nature
of the controlling unit may be: whether a major gene, a super-gene or a
chromosome reconstruction such as an inversion. Indeed the distinc-
tion between these is somewhat arbitrary and usually not ascertained.

E. B. Ford, 1965, Genetic Polymorphism

Discontinuous variation of this polymorphic kind,
in which intermediates are nearly or completely
absent, must be maintained by some type of
switch-mechanism producing alternative forms.
This, it might be thought, could be provided by
environmental stimuli; yet it seems hardly ever to
be so, doubtless owing to the difficulty of obtaining
clear-cut and contrasted phases by such means.
It is true that very distinct seasonal forms of
butterflies are evoked by length of day ...
However, in these circumstances, the whole of
each generation is similar. Far greater difficulties,
requiring an extremely delicate adjustment to
external conditions, would be encountered in
producing in this way contrasted and
discontinuous types within a single brood.
Moreover, their proportions could not be
accurately adjusted to meet changes in the
ecological situation: a drawback fatal to the
evolution of a polymorphism which, moreover,
often arises automatically owing to the
development of heterozygous advantage. On the
contrary, therefore, the control of polymorphic
phases is almost always genetic.



More recent views

West-Eberhard, 1989, Phenotypic plasticity and the origins of diversity

|  The importance of facultative expression for the intraspecific evolution of
divergent traits cannot be overemphasized. Condition sensitivity not only
reduces negative selection by assuring that traits are expressed in appropriate
conditions. It also contributes to divergence by increasing the consistency
with which particular phenotypes are matched to the particular contrasting
conditions which mold their divergent forms. For these reasons facultative
expression should prove both more common and more often associated with
complex alternatives than is allelic-switch control. Facultative expression is
associated with “difficult to evolve” complex traits such as “altruism” (self-
sacrificing beneficence) (225-227) and the ecological transitions often

West-Eberhard, 2003,
Developmental Plasticity and Evolution

Alternative phenotypes epitomize the switch-controlled, environmentally sensitive, adaptive
traits that characterize all of ontogeny ...

Several kinds of data are regularly mistaken for genotype-specific determination of alternatives
and treated as if environmental influence is absent or negligible ...

Examples attributed to stochastic regulation often prove, upon further examination, to be
conditional or genotype-specific alternatives.



|deas about random morph determination

Bet-hedging or "adaptive
coin-flipping" can evolve
as a result of temporally
fluctuating environments
(Cooper and Kaplan, 1982)

Spatial variation leads to
genetic polymorphism but
temporal variation can lead
to random determination
(Seger and Brockmann, 1987)

Sib competition may favor
bet-hedging (Moran, 1992)

Mixed ESS and genetic
polymorphism are alternative
possibilities for the hawk-dove
game (Maynard Smith, 1982)

Games between relatives
sometimes have mixed
ESS solutions only
(Hines and Haigh, 1985)

Walker, 1986, Stochastic polyphenism
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Fig. 3. Response of bean aphids to crowding (data from Shaw 1970a). Filled points
and solid line are for the crowded progeny of uncrowded apterae. Open points and upper
dashed line are for crowded progeny of apterae that were themselves crowded 100-400
per stipule. No alatae are produced at densities below 100 larvae/stipule. The difference
between the two data sets shows that the environment of the mother influences the
likelihood of her offspring being alatae. (The lower dashed line is for crowded offspring
of alatae. Offspring of alatae are never alate, again demonstrating a maternal influence.)
(Lines are eye-fitted.)




Morphs as threshold traits

Walker, 1986
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Disruptive selection

The idea that disruptive selection and polymorphism are connected is not new

® Mather (1955)
— Polymorphism as an outcome of disruptive selection
® Maynard Smith (1962)
— Disruptive selection, polymorphism and sympatric speciation
* Thoday (1972)
— Disruptive selection
® Christiansen (1991)

— On conditions for evolutionary stability for a continuously varying character
(combining concepts of convergence stability and polymorphism)
® Abrams, Matsuda, and Harada (1993)

— Evolutionarily unstable fithess maxima and stable fitness minima

f branching point
But the recent developments in adaptive dynamics
have been crucial in moving disruptive selection
to the forefront of evolutionary analysis
® Metz, Geritz, Meszena, Jacobs, and Van Heerwaarden (1996) z* z'
— Adaptive dynamics: a geometrical study of the consequences
of nearly faithful reproduction f
® Geritz, Kisdi, Meszena, and Metz (1998) .
— Evolutionarily singular strategies and the adaptive growth and r4
branching of the evolutionary tree




Further development of adaptive dynamics:
Classification of singular points in restricted
and extended trait spaces

Restricted trait space Z embedded in
extended trait space X X

Singular point z* in Z

Is the corresponding point x* in X singular? y4
If z* is a branching point, is x* a branching point?

If z* is a branching point, is x* convergence stable?

Z is a "primary" trait space (for ease of presentation, Z is one-dimensional)
X is distributions on Z

For simplicity, only "two-point" distributions will be considered

x=(z,, 2, q9,, q,), z,with probability q,, z, with probability q,=1 -q,

x=(z z; q,, q,) corresponds to z

f(z', z) invasion fithess in Z

F(x', x) invasion fitness in X



Multidimensional convergence stability

Fisher's runaway process
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After Pomiankowski, Iwasa, and Nee, 1991

The distribution of mutational increments (pleiotropy,
genetic correlations) can have a qualitative influence
on multidimensional convergence stability

A useful stability criterion is that there is convergence
for evolutionary change constrained to any (one-
dimensional) line through a point x*

Jacobian matrix of selection gradient negative definite

This guarantees convergence for solutions to the
canonical equation

Convergence in some direction but divergence
in other directions is a possibility

A

X3

If the trait space is restricted
! to this line, there would be
convergence stability




Equilibria in primary and extended trait spaces

Primary trait: z Dimorphic randomization: z, with probability q,

"same point" q;

S T

®
z* 4

With disruptive selection
at a convergence stable z*
in the primary trait space
we might have either

(i) evolutionary branching
in the primary trait space

(ii) lack of convergence stability
in the extended trait space

(iii) branching along some
other direction in the
extended trait space

z, with probability q, =1 - q,
X = (24, 25 Gy, Q)

x*= (2*5 Z*; q*’ 1'q*)

z, 21523

mean primary trait é/ =q,2, + 4,2,

Convenient

oy Yy
coordinates trait difference n 5 |

parameter forq,,q, £~ 2% -1=1- 2%



Invasion fitness in the extended trait space

An extended trait x is a probability distribution
Invasion fitness F(x', x) is a function of probability distributions

What does a general (smooth) function of a probability distribution look like?

Assume it looks like G(x) ZF(HI(X),...,HK(X)) where F(Hl,...,HK)

is a (smooth) function of several real variables, and the functions Hk(x)
are some sort of averages of the following type:  H(x) = qu . -qzh(zi yeeesZ; )
1 r
{7}
I =(,...,i.), eachi 1s1or2
Examples: H(x)=qh(z)+q,h(z,)
H(x)=q,q,h(z,,2)) + ,9,1(2,,2,) + 4,9,1(2,,2)) + 4,9, (2,,2,)
(the second example is relevant for "kin grouping")
Assume that F(x', x) depends on x' and x in a similar way as for G(x)

(this includes cases where a rare mutant interacts with itself)



Derivatives of invasion fithess

Primary trait space Z

z',z 7 f(z',z2) convergence stable A(zZ)+ D(z) <0
@(‘( ' ) = S(Z) 12 = A(Z) ~

x|, 24 Sy CSS A(z)<0
Selection gradient O”’Zf(z"z) branching A(z)>0

L - S ————=  =D(z)
equilibrium point: §(2)=0 &'
Extended trait space X {=qz+92,, N=z,—z, p=2q,-1, x=(,n,p)
Evaluate derivatives at "pure strategy” x = (2,0, 0)

' FF(x',x)

M = Sg“(Z) = S(Z) T = A(Z)

24 n'=n=0,{'=¢=z n'=n=0,¢"=¢=2 "same as

— — ' before™
S,=0, §,=0 FF(x',x) _ D(2)

For an equilibrium in Z, the corresponding
points in X are equilibria

All other second derivatives needed for /=
Hessian and Jacobian matrices are zero

2424

OF(x',x)
0»')77/2

n'=n=0,"'=f=z

=qi9;8(z)  “new"

n'=n=0,'=¢=z




Stability criteria at "pure-strategy" equilibrium

Look at a convergence stable equilibrium in primary trait space Z
s(2)=0 =
S,(2)=0, §,(z2)=0, S,(2)=0 B

The corresponding points in the yd
extended trait space X are equilibria randomized "
strategy V4
Non-zero elements of Jacobian (B>0) rd
and Hessian matrices __.—"'
N A ra

J, =A@2)+ D(2) ' =

J7777 = qu2B(Z)

Hy = A(2) monomorphic CSS| branching
(A<0,B<0) (A>0)

H7777 = QIQZB(é)

Depending on the signs of A and B,
we get different cases

We might call A "branching disruptivity” and B "randomization disruptivity"




Some comments on the fithess derivatives

In simple situations, we have A(Z) = B(Z) (when the invasion fitness of a mutant trait is
a function of the mutant's arithmetic average
success in interactions with residents)

Introduce C(z)=A(z)—B(z) sothat A(z)=B(z)+ C(2)

We have the following second derivatives with respect to mutant traits

B
éQF(X’,X) ' 12
& 2 B qlB(Z) i h C(Z) randomized ..-’/"
: A = strategy pd
FF(x',x) (8>0)
F(x',x , ”
—r =4;B(2) + ¢;'C(2) 4 ——
2 Z1=24=21=2,=Z
, monomorphic CSS | /branching
FF(x'x) _14.C2) (A<0,B<0) J (A>0)
&’&’ _ qqu Z
17=2 Z|=2zh=z]=2,=2
Circumstances that give non-zero C at "pure strategy" equilibrium: For C =0, there is either a CSS,
® kin-group structure or branching and the evolution

" . o . . of randomization are both possible
® "non-linearity" of fitness function (e.g. as a result

of spatial or temporal fluctuations in conditions)

There is a relation between evolutionary branching in the primary trait space
and a lack of convergence stability in the extended trait space



Different kinds of disruptivity

Example with trait-based competition between two possibly related individuals in a patch

total resource level
t

competing with twin tha
randomizes between z' and -z'

competing with twin at z'

For unrelated individuals, there is disruptive selection at z* =

For twins, there is instead stabilizing selection in the primary trait space (blue curve)
but disruptivity for a dimorphic randomization (red curve)

Temporal fluctuations or restricted gene flow between niches can have similar effects
of differentiating between branching disruptivity and randomization disruptivity



Examples

Two individuals compete
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Two-patch model with soft selection

Establishment
survival in patch i

Invasion fithess
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Simulation: asexual individuals with random dispersal

Depending on the distribution of mutational increments, either
genetic or stochastic dimorphism may evolve (A = B = 0.5625)
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Simulation: hermaphroditic individuals with random dispersal

There are five unlinked loci coding for the "additive effect" y, and The result is a genetic polymorphism, either
an additional locus coding for a "genotype-phenotype” mapping a "major-gene effect" or a "polygenic switch"
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Density

Density

Hermaphroditic individuals with restricted dispersal (m = 0.2)

-10 -5 8 10
Additive genetic value (y)
- ; /’N\Mﬂh}ﬁ_;ﬂ ! | i 1
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Primary trait (z)

Primary trait (2)

A genetic polymorphism is possible (A = 1.54) but
there is no randomization disruptivity (B = -0.36)

For this simulation, a rather "sloppy" genetic
polymorphism evolved (about 5¢10° generations)

An analysis of evolutionary stability and
evolutionary change near to an equilibrium
point in the trait space gives only some
information about eventual evolutionary
outcomes

This can be seen as an advantage of an
analysis of polymorphism based on the
situation near a monomorphic equilibrium:
one gets a general theory by sacrificing
many (possibly relevant) details



"Lottery model"

The environment fluctuates randomly between two conditions (same as the
patches in the previous model

A proportion b of the population is recruited each season, whereas the
remaining proportion 1 - b survives

Selection operates on recruited juveniles

Invasion fitness F(x'\x)= llog[l b+ bﬂl(x ))Jr llog{l bt bﬂz(x ))
2 B (x) 2 B, (x)
5 1
Monomorphic B(z,) = b[_4__2j
ey o O
equilibrium at
x=(z, 0,0 S5
( 0 ) C(ZO) — _b2 —

C approaches 0 s
when b approaches 0 D(z,) =-b(1-b)—
o



Competition between relatives

!/ !/ 1
i a(z,z)=g(z)——
Fecundity (z',2) = g( )1+C(Z,,Z)
' (Z'_Z)z
Competition coefficient c(z,z) = exp - 252

Resource density

g(Z):{l—%y(z—zo)z if |z—z, K277
0 otherwise

B(x',x) = qiq,a(z,2)) + 419,002, 2,) + 439,002, 2,) + 4;9,0(25,2,)

B(zy))=—y+1+7) 1

Invasion fithess Monomorphic 207
, o, equilibrium at 1
W(XI,X)Z (l—r),B(x,x)Jrr,B(x,x) X = (ZO’ 0, 0) C(Zo)z—r—2
B(x,x) e |

C=0forr=0 D(ZO)=—(1—I")

F(x',x)=logw(x',x) g2
o



SD primary trait

SD primary trait

Relatives (r=0.5) competing for resources in a patch

There is randomization disruptivity (B = 0.25) but no branching disruptivity (A = -0.25)

no randomization (constraint)
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Classification of the simulations

My impression is that the classification of the monomorphic equilibrium
gives a good prediction of the evolutionary outcome in a simulation



Sum up

Local analysis: branching versus lack of convergence stability as a
result of disruptivity

"General" fitness function F(x’,x) in extended trait space
Branching (A) and randomization (B) disruptivities may differ for two
qualitatively different types of reasons

— Interactions between relatives, which tend to favor evolution of
randomization over evolutionary branching

— "Non-linear" dependence of invasion fithess F(x'x) on x’

¢ Spatial and temporal variation in conditions are typical examples and tend to favor,
respectively, evolutionary branching and the evolution of randomization

Unified perspective on previous analyses of random versus genetic
morph determination

Adaptive dynamics approximations provide quite useful idealizations
Particularities of genetics may nevertheless play an important role
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