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Alternative phenotypes       members of a population fall
Phenotypic polymorphism    into two or more fairly distinct
Heteromorphism  categories (morphs) with 
Polyphenism respect to some of their traits

Three systems random, genetic, and environmental
morph determination 
(combinations are possible)

• Summary and recapitulation of important ideas in the field
• Sketch unifying theory of the evolution of genetic vs. random morph determination 

– based on evolutionary stability and evolutionary branching in different trait spaces
– disruptive selection and related processes as unifying theme



Phenotypic polymorphism

• Levene (1953)
– multiple-niche polymorphism

• Cohen (1966)
– bet-hedging in fluctuating environments

• Fisher (1930), Shaw and Mohler (1953)
– frequency-dependent selection

• West-Eberhard (1979)
– intraspecific character displacement

Levins, 1968, Changing EnvironmentsBasic idea: Some advantage from specialization

Hoplothrips
Ambystoma



Traditional views on morph determination
E. B. Ford, 1971, Ecological Genetics, 3rd ed.

Discontinuous variation of this polymorphic kind, 
in which intermediates are nearly or completely 
absent, must be maintained by some type of 
switch-mechanism producing alternative forms. 
This, it might be thought, could be provided by 
environmental stimuli; yet it seems hardly ever to 
be so, doubtless owing to the difficulty of obtaining 
clear-cut and contrasted phases by such means. 
It is true that very distinct seasonal forms of 
butterflies are evoked by length of day …  
However, in these circumstances, the whole of 
each generation is similar. Far greater difficulties, 
requiring an extremely delicate adjustment to 
external conditions,  would be encountered in 
producing in this way contrasted and 
discontinuous types within a single brood. 
Moreover, their proportions could not be 
accurately adjusted to meet changes in the 
ecological situation: a drawback fatal to the 
evolution of a polymorphism which, moreover, 
often arises automatically owing to the 
development of heterozygous advantage. On the 
contrary, therefore, the control of polymorphic 
phases is almost always genetic. 

E. B. Ford, 1965, Genetic Polymorphism



More recent views
West-Eberhard, 1989, Phenotypic plasticity and the origins of  diversity

West-Eberhard, 2003,  
Developmental Plasticity and Evolution
Alternative phenotypes epitomize the switch-controlled, environmentally sensitive, adaptive 
traits that characterize all of ontogeny …

Several kinds of data are regularly mistaken for genotype-specific determination of alternatives
and treated as if environmental influence is absent or negligible … 

Examples attributed to stochastic regulation often prove, upon further examination, to be
conditional or genotype-specific alternatives.



Ideas about random morph determination
Walker, 1986, Stochastic polyphenism

Bet-hedging or "adaptive 
coin-flipping" can evolve
as a result of temporally
fluctuating environments
(Cooper and Kaplan, 1982)

Spatial variation leads to 
genetic polymorphism but
temporal variation can lead
to random determination
(Seger and Brockmann, 1987)

Sib competition may favor
bet-hedging (Moran, 1992)

Mixed ESS and genetic 
polymorphism are alternative
possibilities for the hawk-dove
game (Maynard Smith, 1982)

Games between relatives 
sometimes have mixed
ESS solutions only
(Hines and Haigh, 1985)



Morphs as threshold traits

Roff, 1996Walker, 1986



Disruptive selection

• Mather (1955)
– Polymorphism as an outcome of disruptive selection 

• Maynard Smith (1962)
– Disruptive selection, polymorphism and sympatric speciation

• Thoday (1972)
– Disruptive selection

• Christiansen (1991)
– On conditions for evolutionary stability for a continuously varying character

(combining concepts of convergence stability and polymorphism)
• Abrams, Matsuda, and Harada (1993)

– Evolutionarily unstable fitness maxima and stable fitness minima

The idea that disruptive selection and polymorphism are connected is not new
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But the recent developments in adaptive dynamics 
have been crucial in moving disruptive selection 
to the forefront of evolutionary analysis 

• Metz, Geritz, Meszena, Jacobs, and Van Heerwaarden (1996)
– Adaptive dynamics: a geometrical study of the consequences

of nearly faithful reproduction
• Geritz, Kisdi, Meszena, and Metz (1998)

– Evolutionarily singular strategies and the adaptive growth and
branching of the evolutionary tree



Further development of adaptive dynamics:
Classification of singular points in restricted

and extended trait spaces

Restricted trait space Z embedded in
extended trait space X

Singular point z* in Z

Is the corresponding point x* in X singular?

If z* is a branching point, is x* a branching point?

If z* is a branching point, is x* convergence stable? 

z*

x*
Z

X

Z is a "primary" trait space (for ease of presentation, Z is one-dimensional)

X is distributions on Z

For simplicity, only "two-point" distributions will be considered

x = (z1, z2; q1, q2),   z1 with probability q1, z2 with probability q2 = 1 - q1

x = (z, z; q1, q2)  corresponds to z

f(z', z) invasion fitness in Z

F(x', x) invasion fitness in X



Multidimensional convergence stability
Fisher's runaway process

After Pomiankowski, Iwasa, and Nee, 1991

male-female
correlation = 0

male-female
correlation > 0

The distribution of mutational increments (pleiotropy, 
genetic correlations) can have a qualitative influence
on multidimensional convergence stability

A useful stability criterion is that there is convergence
for evolutionary change constrained to any (one-
dimensional) line through a point x*

Jacobian matrix of selection gradient negative definite

This guarantees convergence for solutions to the 
canonical equation

x1

x2

•
If the trait space is restricted
to this line, there would be
convergence stability

Convergence in some direction but divergence
in other directions is a possibility



Equilibria in primary and extended trait spaces 

Primary trait: z Dimorphic randomization: z1 with probability q1
z2 with probability q2 = 1 - q1
x = (z1, z2; q1, q2)

With disruptive selection 
at a convergence stable z*
in the primary trait space
we might have either

(i)   evolutionary branching
in the primary trait space 

(ii)  lack of convergence stability
in the extended trait space

(iii) branching along some
other direction in the
extended trait space

• zz*
•

z1

z2

q1

z1=z2

"same point"

x*

x* = (z*, z*; q*, 1-q*)

ζ = q1z1 + q2z2

η = z2 − z1

ρ = 2q2 −1=1− 2q1

Convenient 
coordinates

mean primary trait

trait difference

parameter for q1, q2



Invasion fitness in the extended trait space
An extended trait x is a probability distribution

Invasion fitness F(x', x) is a function of probability distributions

What does a general (smooth) function of a probability distribution look like?

  G(x) = Γ(H1(x),…,HK (x))Assume it looks like   Γ(H1,…,HK )where

is a (smooth) function of several real variables, and the functions Hk (x)

  

H(x) = q1"q2h(zi1
,…,zir

)
I r{ }
∑

Ir = (i1,…,ir),   each im  is 1 or 2

are some sort of averages of the following type: 

H(x) = q1h(z1) + q2h(z2)Examples:

H(x) = q1q1h(z1,z1) + q1q2h(z1,z2) + q2q1h(z2,z1) + q2q2h(z2,z2)

(the second  example is relevant for "kin grouping")

Assume that F(x', x) depends on x' and x in a similar way as for G(x)

(this includes cases where a rare mutant interacts with itself)



Derivatives of invasion fitness
Primary trait space Z

A( ˆ z ) < 0
A( ˆ z ) + D(ˆ z ) < 0

A( ˆ z ) > 0

convergence stable

CSS

branching

∂ 2 f ( ′ z ,z)
∂ ′ z 2

′ z = z

= A(z)

∂ 2 f ( ′ z ,z)
∂ ′ z ∂z ′ z = z

= D(z)

∂f ( ′ z ,z)
∂ ′ z ′ z = z

= s(z)

Selection gradient

equilibrium point: s( ˆ z ) = 0

Extended trait space X ζ = q1z1 + q2z2,   η = z2 − z1,    ρ = 2q2 −1,     x = (ζ ,η,ρ)

x = (z,0,ρ)Evaluate derivatives at "pure strategy"

∂ 2F( ′ x , x)
∂ ′ ζ 2

′ η =η= 0, ′ ζ =ζ = z

= A(z)

∂ 2F( ′ x , x)
∂ ′ ζ ∂ζ ′ η =η= 0, ′ ζ =ζ = z

= D(z)

∂F( ′ x , x)
∂ ′ ζ ′ η =η= 0, ′ ζ =ζ = z

= Sζ (z) = s(z)

Sη = 0,   Sρ = 0

For an equilibrium in Z, the corresponding
points in X are equilibria

All other second derivatives needed for
Hessian and Jacobian matrices are zero

"same as
before"

∂ 2F( ′ x , x)
∂ ′ η 2

′ η =η= 0, ′ ζ =ζ = z

= ′ q 1 ′ q 2B(z) "new"



Stability criteria at "pure-strategy" equilibrium

Look at a convergence stable equilibrium in primary trait space Z

Jζζ = A(ˆ z ) + D( ˆ z )
Jηη = q1q2B(ˆ z )
Hζζ = A(ˆ z )
Hηη = q1q2B(ˆ z )

s( ˆ z ) = 0 ⇒
Sζ ( ˆ z ) = 0,   Sη ( ˆ z ) = 0,   Sρ ( ˆ z ) = 0

We might call A "branching disruptivity" and B "randomization disruptivity"

The corresponding points in the
extended trait space X are equilibria

Non-zero elements of Jacobian
and Hessian matrices

Depending on the signs of A and B,
we get different cases



Some comments on the fitness derivatives
A( ˆ z ) = B(ˆ z )In simple situations, we have (when the invasion fitness of a mutant trait is

a function of the mutant's arithmetic average
success in interactions with residents)

A(z) = B(z) + C(z)C(z) = A(z) − B(z)Introduce so that

We have the following second derivatives with respect to mutant traits

∂ 2F( ′ x , x)
∂ ′ z 1

2
′ z 1 = ′ z 2 = z1 = z2 = z

= ′ q 1B(z) + ′ q 1
2C(z)

∂ 2F( ′ x , x)
∂ ′ z 2

2
′ z 1 = ′ z 2 = z1 = z2 = z

= ′ q 2B(z) + ′ q 2
2C(z)

∂ 2F( ′ x , x)
∂ ′ z 1∂ ′ z 2 ′ z 1 = ′ z 2 = z1 = z2 = z

= ′ q 1 ′ q 2C(z)

Circumstances that give non-zero C at "pure strategy" equilibrium:
• kin-group structure
• "non-linearity" of fitness function (e.g. as a result 

of spatial or temporal fluctuations in conditions) 

For C = 0, there is either a CSS,
or branching and the evolution
of randomization are both possible 

There is a relation between evolutionary branching in the primary trait space
and a lack of convergence stability in the extended trait space



Different kinds of disruptivity
Example with trait-based competition between two possibly related individuals in a patch

z'0

total resource level

competing with twin that
randomizes between z' and -z'

competing with unrelated
resident at z = 0

competing with twin at z'

For unrelated individuals, there is disruptive selection at z* = 0

For twins, there is instead stabilizing selection in the primary trait space (blue curve)
but disruptivity for a dimorphic randomization (red curve)

Temporal fluctuations or restricted gene flow between niches can have similar effects
of differentiating between branching disruptivity and randomization disruptivity



Examples
Two individuals compete
for resources in a patchtemporal fluctuations

varying 
separation of
niche optima

spatial fluctuations



Two-patch model with soft selection

α i(z) = aexp −
(z −θi)

2

2σ 2

 

 
 

 

 
  ,    θ1 = z0 −δ,   θ2 = z0 + δ

βi(x) = q1α i(z1) + q2α i(z2)
Establishment
survival in patch i

λ(u1,u2) = (1− m) u1 + u2

2
+

1
4

(1− m)2(u1 − u2)2 + m2u1u2

F( ′ x ,x) = logλ β1( ′ x )
β1(x)

,β2( ′ x )
β2(x)

 

 
 

 

 
 

Invasion fitness

B(z0) =
δ2

σ 4 −
1

σ 2

C(z0) =
1− 2m

m
δ 2

σ 4

D(z0) = m −1
m

δ 2

σ 4

Monomorphic
equilibrium at
x = (z0, 0, 0)

C = 0 for m = 0.5



Simulation: asexual individuals with random dispersal
Depending on the distribution of mutational increments, either 
genetic or stochastic dimorphism may evolve (A = B = 0.5625)

(1− ρ2)η2 2



Simulation: hermaphroditic individuals with random dispersal
There are five unlinked loci coding for the "additive effect" y, and
an additional locus coding for a "genotype-phenotype" mapping

The result is a genetic polymorphism, either
a "major-gene effect" or a "polygenic switch"



Hermaphroditic individuals with restricted dispersal (m = 0.2)

A genetic polymorphism is possible (A = 1.54) but
there is no randomization disruptivity (B = -0.36)

For this simulation, a rather "sloppy" genetic
polymorphism evolved (about 5•105 generations)

An analysis of evolutionary stability and 
evolutionary change near to an equilibrium
point in the trait space gives only some
information about eventual evolutionary
outcomes

This can be seen as an advantage of an 
analysis of polymorphism based on the
situation near a monomorphic equilibrium:
one gets  a general theory by sacrificing
many (possibly relevant) details



"Lottery model"

The environment fluctuates randomly between two conditions (same as the 
patches in the previous model

A proportion b of the population is recruited each season, whereas the
remaining proportion 1 - b survives 

Selection operates on recruited juveniles

F( ′ x ,x) =
1
2

log 1− b + b β1( ′ x )
β1(x)

 

 
 

 

 
 +

1
2

log 1− b + b β2( ′ x )
β2(x)

 

 
 

 

 
 Invasion fitness

B(z0) = b δ 2

σ 4 −
1

σ 2

 

 
 

 

 
 

C(z0) = −b2 δ 2

σ 4

D(z0) = −b(1− b) δ 2

σ 4

Monomorphic
equilibrium at
x = (z0, 0, 0)

C approaches 0 
when b approaches 0



Competition between relatives

α( ′ z ,z) = g( ′ z ) 1
1+ c( ′ z ,z)

c( ′ z ,z) = exp −
( ′ z − z)2

2σ 2

 

 
 

 

 
 

g(z) =
1− 1

2 γ(z − z0)2 if  | z − z0 |< 2 /γ
0                    otherwise             

 
 
 

Fecundity

Competition coefficient

Resource density

β( ′ x , x) = ′ q 1q1α( ′ z 1,z1) + ′ q 1q2α( ′ z 1,z2) + ′ q 2q1α( ′ z 2,z1) + ′ q 2q2α( ′ z 2,z2)

B(z0) = −γ + (1+ r) 1
2σ 2

C(z0) = −r 1
σ 2

D(z0) = −(1− r) 1
2σ 2

Monomorphic
equilibrium at
x = (z0, 0, 0)

C = 0 for r = 0

Invasion fitness

w( ′ x ,x) =
(1− r)β( ′ x ,x) + rβ( ′ x , ′ x )

β(x,x)
F( ′ x ,x) = logw( ′ x ,x)



Relatives (r=0.5) competing for resources in a patch
There is randomization disruptivity (B = 0.25) but no branching disruptivity (A = -0.25)



Classification of the simulations

My impression is that the classification of the monomorphic equilibrium
gives a good prediction of the evolutionary outcome in a simulation



Sum up

• Local analysis: branching versus lack of convergence stability as a 
result of disruptivity

• "General" fitness function F(x',x) in extended trait space
• Branching (A) and randomization (B) disruptivities may differ for two 

qualitatively different types of reasons
– Interactions between relatives, which tend to favor evolution of

randomization over evolutionary branching
– "Non-linear" dependence of invasion fitness F(x',x) on x'

• Spatial and temporal variation in conditions are typical examples and tend to favor, 
respectively, evolutionary branching and the evolution of randomization

• Unified perspective on previous analyses of random versus genetic 
morph determination

• Adaptive dynamics approximations provide quite useful idealizations
• Particularities of genetics may nevertheless play an important role
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