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1 One locus, two allele models: population

dynamical formalism

Two alleles A and a, with corresponding phenotypes Xaa, XaA and XAA.

Individuals reproduce in summer and then die.

Sampling is done immediately after reproduction and the death of the parent
generation.

The densities of newborns will be denoted as naa, naA and nAA.

Female ferilities are denoted as λ(X,Ee(t)), and male fertilities as µ(X,Ee(t)),

Ee the ecological environment (which includes the overall availability of mat-
ing opportunities).

(Arguments will be dropped when there is no need to have them shown, and
λ(XA, Ee) will be further abreviated to λA, etc..)

Gametes combine effectively randomly.



The corresponding population dynamical recurrences:

n′
aa = p′a(λaanaa +

1

2
λaAnaA),

n′
aA = p′A(λaanaa +

1

2
λaAnaA) + p′a(

1

2
λaAnaA + λAAnAA)

= p′Aλaanaa +
1

2
λaAnaA + p′aλAAnAA

n′
AA = p′A(

1

2
λaAnaA + λAAnAA) (1)

with

p′A =
mA

ma + mA

, p′a =
ma

ma + mA

,

ma = µaanaa +
1

2
µaAnaA, mA =

1

2
µaAnaA + µAAnAA. (2)



ma and mA together form the genetic environment Eg for a female centered
model formulation of the form

N(t + 1) = A(E(t))N(t). (3)

with

E =

[
Eg

Ee

]
(4)

and

A =


 p′aλaa

1
2
p′aλaA 0

p′Aλaa
1
2
λaA p′aλAA

0 1
2
p′AλaA p′AλAA


 (5)



The effective male and female fertilities, µ and λ, may be interpreted

either as

the probability that an X individual happens to have a male of female phe-
notype - whatever the sex determination mechanism -

times the survival of that phenotype,

times its gamete production,

times the per gamete probability of fertilisation,

or else as

the effective gametic outputs of hermaphrodites, calculated in a similar man-
ner.



In Diekmann O, Gyllenberg M and Metz JAJ (2003) Steady-state analysis
of structured population models, Theoretical Population Biology 63: 309-338
it is shown that

for any structured population in which everybody is born equal (i.e., every-
body has to pass through a single f(ysiological)- as well as h(eterogeneity)-
state at birth)

the equilibria satisfy a formula of the form (1) with the primes removed,

with the quantities λ and µ replaced by the lifetime production of newborns,
respectively the lifetime sperm production, or, depending on the mating sys-
tem, the lifetime male mating propensity,

and naa, naA and nAA interpreted as the rates at which the various genotypes
are born into the population.



One possible example of how Ee may be generated:

Ee = F

( ∑
A1A2=aa,aA,AA

g1(XA1A2)nA1A2 ,
∑

A1A2=aa,aA,AA

g2(XA1A2)nA1A2

)
.

(6)



2 One locus, two allele models: population

genetical formalism

Population genetics uses a different coordinate system consisting of

the total population density

N = naa + naA + nAA, (7)

the male gametic frequencies pa and pA,
and
the female gametic frequencies

q′A =
1
2
λaAnaA + λAAnAA

λaanaa + λaAnaA + λAAnAA

, q′a = 1 − q′A. (8)

From these quantities the genotype densities can be reconstructed as

naa = paqaN, naA = (pAqa + paqA)N, nAA = pAqAN. (9)



The population genetical recurrences:

N ′ = λ̄N,

µ̄p′A = µAApAqA +
1

2
µaA(pAqa + paqA),

λ̄q′A = λAApAqA +
1

2
λaA(pAqa + paqA), (10)

with

µ̄ = paqaµaa + (pAqa + paqA)µaA + pAqAµAA,

λ̄ = paqaλaa + (pAqa + paqA)λaA + pAqAλAA.



These recurrences will look unfamiliar to anybody brought up on the
Hardy-Weinberg principle. The difference derives from the fact that µ and λ
were not assumed to be proportional, as is done implicitly in the textbooks.

If such a proportionality holds, pA becomes equal to qA, and the equations
collapse to the familiar pattern.

However, as soon as one looks at more realistic biological situations there
is little ground for a proportionality assumption.

Equation (10) has an elegance that can fruitfully be exploited for a num-
ber of purposes. One disadvantage is that the transformation from the analog
of (1) and (2) to an analog of (10) is less than obvious for models of phys-
iologically structured populations expressed in matrix, ODE or PDE form.
This can be remedied only by reverting to a generally less accessible integral
equation formalism. The necessary formalism is worked out at the popula-
tion dynamical side in Diekmann et al (1998, 2001), and at the population
genetical side, under the Hardy-Weinberg assumption, in Norton (1928) and,
in discretised form, in Charlesworth (1980). The combination of the two is
developed in Diekmann et al (2003), but only with respect to the special
problem of calculating point attractors, where the calculations regain the
elegant simplicity of (10).



To calculate the invasion fitness of A into a monomorphically a population,
first the long term dynamics of the resident population is calculated from

N ′ = λaaN, (11)

together with the rule for determining Ee, in the example

Ee = F (g1(Xaa)N, g2(Xaa)N). (12)

Next, pa is replaced with 1− pA and qa with 1− qA in the recurrences for pA

and qA, and the smaller terms are dropped:

p′A =
1

2

µaA

µaa

(pA + qA), q′A =
1

2

λaA

λaa

(pA + qA). (13)

Adding the two equations in (13) gives

(pA + qA)′ =
1

2

[
µaA

µaa

+
λaA

λaa

]
(pa + qA). (14)



Therefore the invasion fitness of A in an a environment is equal to

ρA(E(Xaa)) = lim
T→∞

1

T

T−1∑
t=0

ln

(
1

2

[
µaA(Ee,a(t))

µaa(Ee,a(t))
+

λaA(Ee,a(t))

λaa(Ee,a(t))

])
. (15)

In the special case that the monomorphic attractor leads to a constant envi-
ronment, Ee,a(t) = Ēe,a:

ρA(Ēe,a) = ln(R0,A(Ēe,a)) = ln

(
1

2

[
µaA

µaa

+
λaA

λaa

])
, (16)

[The right equality of (16) also holds for structured populations.]



Shaw RF and Mohler JD (1953) The selective advantage of the sex ratio.
American Naturalist 87: 337-342.

Parsons PA (1961). The initial progress of new genes with viability differences
between the sexes and with sex linkage. Heredity 16: 103-107.



3 Invasion in a genetically variable resident

population I: more alleles

Consider a new allele α that appears in a dimorphic (a,A) population, char-
acterised by an internal attractor of (10) with, say (9) and (6):

p′α =
1

2
[µ̃αa(pαqa + paqα) + µ̃αA(pαqA + pAqα)] ,

q′α =
1

2

[
λ̃αa(pαqa + paqα) + λ̃αA(pαqA + pAqα)

]
, (17)

with
λ̃ = λ/λ̄, µ̃ = µ/µ̄, (18)

and µαa, µαA, λαa, λαA, pa, qa, pA, qA, µ̄, and λ̄ determined by the resident
population dynamics.



In vector-matrix form:

[
pα

qα

]′
= Aα(Ea,A)

[
pα

qα

]

with

Aα =
1

2

[
(µ̃αaqa + µ̃αAqA) (µ̃αapa + µ̃αApA)

(λ̃αaqa + λ̃αAqA) (λ̃αapa + λ̃αApA)

]

=
1

2

([
µ̃αa

λ̃αa

]
[qa pa] +

[
µ̃αA

λ̃αA

]
[qA pA]

)
. (19)



In a constant resident environment the invasion fitness of α equals ln(R0,α),
R0,α the dominant eigenvalue of Aα.

Let the invariant b-state distribution corresponding to R0,α be

Uα =

[
p̂α

q̂α

]
, (20)

with p̂α + q̂α = 1.

Then R0,α can be written as

R0,α = 1TAαUα =

1

2

[
(p̂αqa + q̂αpa)µ̃αa + (p̂αqA + q̂αpA)µ̃αA + (p̂αqa + q̂αpa)λ̃αa + (p̂αqA + q̂αpA)λ̃αA

]
.

(21)

[Eshel I and Feldman M (1984) Initial increase of new mutants and some
continuity properties of ESS in two-locus systems. American Naturalist124:
631-640

Liberman U (1988) External stability and ESS: criteria for the initial increase
of a new mutant allele. Journal of Mathematical Biology 26: 477-485 ]



The invasion fitness of α is negative, i.e., R0,α < 1, if and only if

1

2
(qaµ̃αa + qAµ̃αA + paλ̃αa + pAλ̃αA)− 1

4
(pAqa − paqA)(µ̃αaλ̃αA − µ̃αAλ̃αa) < 1

(22)
and

1

2
(qaµ̃αa + qAµ̃αA + paλ̃αa + pAλ̃αA) < 2 (23)

Conversily, R0,α > 1 if one or the other of the inequalities (22) and (23) hold
in the opposite direction.

Whenever the resident population is in Hardy-Weinberg equilibrium, or when
in the invader heterozygotes µ and λ are proportional, the second term of (22)
is zero, so that (22) simplifies to an explicit averaged Shaw-Mohler formula,
and (23) becomes redundant.



Proof : The characteristic polynomial of Aα equals

Pα(R) = R2 − trace(Aα)R + det(Aα).

Aα is nonnegative. Therefore Pα has at least one positive real root. Moreover,
Pα has positive leading coefficient.

Therefore, Pα has a root to the right of 1, if and only if

Pα(1) < 0 or P ′
α(1) < 0.



1

P

R 1

P

R 1

P

R

R0 > 1 R0 < 1



1

trace

R0 > 1

R0 < 1

det

non-feasible region



If the interest is in the R0,α of mutants with allelic trait values Xα close
to that of some resident allele XA, for which necessarily R0,A = 1, it suffices
to consider (22).

The same result can also be reached by the following direct graphical
argument: As R0,A = 1 is by definition the rightmost root of PA, PA(1) = 0
and P ′

A(1) > 0. Hence, for sufficiently small |Xα −XA|, P ′
α(1) > 0, so that

(23) is implied by (22).



1

P

R



Allelic Adaptive Dynamics

Assume that alleles carry a trait X, so that A corresponds to XA.

The phenotype is generated through the map

Φ : (XA1 , XA2) �→ XA1A2 = Φ(XA1 , XA2). (24)

which is assumed to be smooth and symmetric:

Φ(X, Y ) = Φ(Y,X). (25)

As a consequence for a small mutational step from XA to Xα

Xαα −XAA ≈ 2(XαA −XAA). (26)

(Andrea Pugliese, personal communication)



Proof : Let

∂Φ

∂X
(X, Y )

∣∣∣∣
X=Y

=
∂Φ

∂Y
(X, Y )

∣∣∣∣
X=Y

=: Φ′(X,X).

Then, if Xα = XA + εZ, |Z| = 1, ε small,

XαA = Φ(XA, XA + εZ) = XAA + εΦ′(XA, XA)Z + O(ε2),

and

Xαα = Φ(XA + εZ,XA + εZ)

= XAA + εΦ′(XA, XA)Z + εΦ′(XA, XA)Z + O(ε2)

= XAA + 2εΦ′(XA, XA)Z + O(ε2),

and therefore
Xαα −XAA = 2(XαA −XAA) + O(ε2).



We can now formulate an adaptive dynamics for the coevolution of the two
allelic “species” Xa and XA.

Assume that mutational steps are small. Then, if α is a mutant of, say, a, so
that Xα = Xa + εZ, with |Z| = 1 and ε small:

ln(R0,α) = ε
∑

A=a,A

[
∂R0,α

∂µαA
(µaa, µaA, λaa, λaA)

dµ

dXαA
(XaA) +

∂R0,α

∂λαA
(µaa, µaA, λaa, λaA)

dλ

dXαA
(XaA)

]
∂Φ

∂Xα

(Xa, XA) Z + O(ε2),

(27)

where terms like ∂Φ
∂Xα

(Xa, XA) should be interpreted as ∂Φ
∂Xα

(Xα, XA) evalu-
ated at Xα = Xa.

The term between the summation sign and Z is the (transpose of) the selec-
tion gradient for XA appearing in the canonical equation.



From e.g. Caswell (2001):

R0,α = R0,a + (VaUa)
−1Va(Aα − Aa)Ua + O(ε2) = (VaUa)

−1VaAαUa + O(ε2).
(28)

with Aa defined as in (19) with α replaced by a, and with Va and Ua the left
and right eigenvectors of Aa corresponding to the eigenvalue R0,a = 1.

From (28) the derivative of R0,α for µαA respectively λαA can be calculated
as

∂R0,α

∂µαA
= (VaUa)

−1
∑
i,j

ua,iva,j
∂aα,ij

∂µαA
,

∂R0,α

∂λαA
= (VaUa)

−1
∑
i,j

ua,iva,j
∂aα,ij

∂λαA
.

(29)



From the interpretation it is immediately guessed that

Ua =

[
pa

qa

]
. (30)

This guess is corroborated by multiplying Ua with Aa and using the equilib-
rium equation corresponding for the resident.

Calculating the left eigenvector takes a little more work:

Va = [1 − δλ̃aa + δλ̃aA, 1 + δµ̃aa − δµ̃aA] (31)

with

δ =
1

2
(pa − qa) =

1

2
(qA − pA).



Note that the combination of (28), (30) and (31) is nothing but a weighted
sum of λ̃αa and λ̃αA with weights summing to 1

2
plus a weighted sum of

µ̃αa and µ̃αA, again with weights summing to 1
2
, in other words, an explicit

averaged Shaw-Mohler formula.)

Note also that in the hardy-Weinberg case δ = 0.



As mutational steps are assumed to be small, away from the singular
resident combinations and from bifurcations of the population dynamics,
invasion implies fixation (Geritz et al. 2002; Dercole 2002).

Therefore, as long as at least one of the selection gradients, at Xα = Xa

and at Xα = XA, are nonzero, (27) to (31) together with the distribution
of mutational steps around Xa and XA tell the direction of evolutionary
movement.

Combinations of resident alleles for which both selection gradients are
zero, which includes all ESSes, are called evolutionarily singular.

For evolutionarily singular combinations of alleles the first order criterion
(28) to (31) can no longer decide even whether nearby alleles can invade that
particular combination.

To decide whether or not a combination of alleles is globally impervious
to invasion it is necessary to fall back on (22) and (23).



1

2
(qaµ̃αa + qAµ̃αA + paλ̃αa + pAλ̃αA)− 1

4
(pAqa − paqA)(µ̃αaλ̃αA − µ̃αAλ̃αa) < 1

(22)
and

1

2
(qaµ̃αa + qAµ̃αA + paλ̃αa + pAλ̃αA) < 2 (23)

Result :
If the set of trait values realisable by mutants is connected and (22) holds
good for all potential mutants, then the combination (a,A) is impervious to
invasion.

The combination fails to be an ESS if potential mutants exist such that the
inequality (22) holds in the opposite direction.



Proof :

That such is the case can be seen by looking at figure XXX2.A2. Any
mutant α0 such that Xα0 is equal to either Xa or XA necessarily maps onto the
line segment where R0 = 1. Now take any other mutant α1 and connect Xα1

with a continuous curve to Xα0 . If (22) holds good for all possible mutants,
other than α0, the curve always stays left of the line segment separating the
regions labeled R0 < 1 and R0 > 1, and therefore R0,α1 < 1.

Another graphical way of phrasing the previous argument is by observing
how the likes of figure XXX2.A1 change by moving Xα through allelic trait
space away from Xα0 . For the candidate ESS to make any chance, the first
small change in Xα should lift up Pα(1). Condition (22) then says that Pα(1)
nowhere sinks below 0 again, except when Xα = Xa or Xα = XA. Therefore,
with those two exceptions, the rightmost root of Pα(R) cannot but stay to
the left of 1.



1

trace

R0 > 1

R0 < 1

det

non-feasible region



1

P

R



Of course, if the set of potential allelic trait values is not connected, but
can be made connected by adding virtual allleles such that for all allelic
trait values in the so enlarged set (22) applies in the environment set by
the allelic combination under consideration, then that combination is also an
ESS. Furthermore it is not necessary that all R0,α other than for α = a or
α = A are smaller than 1. Generic bifurcation theory tells that in general
the resident combination of alleles will still be uninvadable if R0,α < 1 but
for some isolated points in trait space where R0,α = 1.



4 Invasion in genetically variable resident pop-

ulations II: two loci

Once again assume that the resident population is dimorphic at the A-locus,
with two resident alleles, a and A, and is otherwise effectively genetically
homogeneous, so that the ecological and genetic environments are captured
by the attractor of (10) and, for example (6).

Now assume that a mutant allele B arises at another locus that formerly
carried the allele b only.

In the gametes, B occurs together with either a or A, so that four gamete
types have to be distinguished, occurring with frequencies

pB,a, qB,a, pB,A and qB,A



For a recombination probability r:

p′B,a =
1

2
[µ̃B,aa(qapB,a + paqB,a)

+ µ̃B,aA((1 − r)(qApB,a + pAqB,a) + rµ̃B,aA(qapB,A + paqB,A)],

q′B,a =
1

2
[λ̃B,aa(qapB,a + paqB,a)

+ λ̃B,aA((1 − r)(qApB,a + pAqB,a) + rλ̃B,aA(qapB,A + paqB,A)],

p′B,A =
1

2
[µ̃B,AA(qApB,A + pAqB,A)

+ µ̃B,aA((1 − r)(qapB,A + paqB,A) + rµ̃B,aA(qApB,a + pAqB,a)],

q′B,A =
1

2
[λ̃B,AA(qApB,A + pAqB,A)

+ λ̃B,aA((1 − r)(qapB,A + paqB,A) + rλ̃B,aA(qApB,a + pAqB,a)],

(32)

with pa, pA, qa, and qA the frequencies of ab and Ab in the micro- resp.
macro-gametes, µ̃ = µ/µ̄, λ̃ = λ/λ̄, and µ̄ and λ̄, as well as Ee, and therefore
µB,aa = µaabB etc., determined by the resident (a,A) polymorphism.






pB,a

qB,a

pB,A

qB,A




′

= AB(Ea,A)




pB,a

qB,a

pB,A

qB,A


 (33)

with

AB = AB,sel + AB,rec, AB,sel =

[
AB,sel,a 0

0 AB,sel,A

]
,

AB,sel,a =
1

2

[
µ̃B,aaqa + µ̃B,aAqA µ̃B,aapa + µ̃B,aApA

λ̃B,aaqa + λ̃B,aAqA λ̃B,aapa + λ̃B,aApA

]
,

AB,sel,A =
1

2

[
µ̃B,AAqA + µ̃B,aAqa µ̃B,AApA + µ̃B,aApa

λ̃B,AAqA + λ̃B,aAqa λ̃B,AApA + λ̃B,aApa

]
,

AB,rec =
r

2




−µ̃B,aA

−λ̃B,aA

µ̃B,aA

λ̃B,aA


 [qA pA − qa − pa]. (34)



The likeness of the formulas for AB,sel,a and AB,sel,A with (19) can be
understood from the fact that without crossing over the combinations Ba
and BA act as pseudo-alleles.)

The invasion fitness of the B-allele is the dominant Lyapunov exponent
of the matrix sequence AB(Ea,A(t)).



In a constant resident environment the invasion fitness of B equals ln(R0,B),
R0,B the dominant eigenvalue of AB(Ēa,A).

Let the invariant b-state distribution corresponding to R0,B be

UB =




p̂B,a

q̂B,a

p̂B,A

q̂B,A


 , (35)

(with p̂B,a + p̂B,A + q̂B,a + q̂B,A = 1). Then R0,B can be written as

R0,B(Ēa,A) = 1TABUB = 1TAB,selUB, (36)

since 1TAB,rec = 0. And (36) can be rewritten as

R0,B =
1

2
(w1µ̃B,aa + w2µ̃B,aA + w3µ̃B,AA + w1λ̃B,aa + w2λ̃B,aA + w3λ̃B,AA)

with

w1 = p̂B,aqa+paq̂B,a, w2 = p̂B,aqA+p̂B,Aqa+paq̂B,A+pAq̂B,a, w3 = p̂B,AqA+pAq̂B,A,
(37)



[Eshel I and Feldman M (1984) Initial increase of new mutants and some
continuity properties of ESS in two-locus systems. American Naturalist124:
631-640

Liberman U (1988) External stability and ESS: criteria for the initial increase
of a new mutant allele. Journal of Mathematical Biology 26: 477-485 ]



(37) has the same advantages and disadvantages as (21). It supports the
intuition that new mutants can only invade if they increase Shaw-Mohler
fitness in some averaged manner. However, (37) is of no help for doing
concrete calculations, such as calculating ESSes.



Once more assume that all mutations have only small phenotypic effect.
Then (e.g. Caswell 2001), since AB,recUb = 0:

R0,B = (VbUb)
−1VbABUb + O(ε2) = (VbUb)

−1VbAB,selUb + O(ε2), (38)

with

Ub =




pa

qa

pA

qA


 . (39)

Vb = [(µ̃aA(1 + δλ̃AA) + λ̃aA(1 − δµ̃AA))(1 − δλ̃aa + δλ̃aA),

(µ̃aA(1 + δλ̃AA) + λ̃aA(1 − δµ̃AA))(1 + δµ̃aa − δµ̃aA),

(µ̃aA(1 − δλ̃aa ) + λ̃aA(1 + δµ̃aa ))(1 + δλ̃AA − δλ̃aA),

(µ̃aA(1 − δλ̃aa ) + λ̃aA(1 + δµ̃aa ))(1 − δµ̃AA + δµ̃aA)]. (40)

(NB µ̃b,aA = µ̃aA, etc..)



Note that the combination of (38), (39) and (40) does not contain r. For
sufficiently small selection the relaxation to linkageequilibrium takes place
on a faster time scale than the selective changes.



Vb and Ub are the left and right eigenvectors of Ab corresponding to the
eigenvalue R0,b = 1, Ab defined as in (34) with B replaced with b, and with
ε defined in a manner similar to that in the allelic case.

The formula for Uv is immediately guessed from the interpretation.
This guess is corroborated by observing that Ab,sel has two eigenvectors

[pa, qa, 0, 0]T and [0, 0, pA, qA]T with eigenvalue 1 (use the equilibrium equa-
tion corresponding to (10)). Among all weighted sums of these two vectors
only those with equal weights are annihilated by Ab,rec.

Vb can be calculated by a similar strategy.



Ab = Ab,sel + Ab,rec, Ab,sel =

[
Ab,sel,a 0

0 Ab,sel,A

]
,

Ab,sel,a =
1

2

[
µ̃aaqa + µ̃aAqA µ̃aapa + µ̃aApA

λ̃aaqa + λ̃aAqA λ̃aapa + λ̃aApA

]
,

Ab,sel,A =
1

2

[
µ̃AAqA + µ̃aAqa µ̃AApA + µ̃aApa

λ̃AAqA + λ̃aAqa λ̃AApA + λ̃aApa

]
,

Ab,rec =
r

2




−µ̃aA

−λ̃aA

µ̃aA

λ̃aA


 [qA pA − qa − pa].



Ab,sel has two eigenvectors with eigenvalue 1 (use the equilibrium equation
for the resident:

[pa, qa, 0, 0]T and [0, 0, pA, qA]T

Among all weighted sums of these two vectors only those with equal weights
are annihilated by Ab,rec.

Vb can be calculated by a similar strategy.



(39) to (40) together allow a first check whether some single locus poly-
mophism is impervious to change through the invasion of so-called modifiers,
i.e., new alleles on other loci that induce only small phenotypic changes.
(Notice that, in the same manner as in the one locus case, (38) can be read
as an averaged Shaw-Mohler formula.)



When the resident polymorphism is such that the resident µ’s are all equal
and so are the resident λ’s,

Vb = [2, 2, 2, 2], and pa = qa, pA = qA, (41)

so that

R0,B(Ēa,A) =

1

2
(p2

aµ̃B,aa + 2papAµ̃B,aA + p2
Aµ̃B,AA + p2

aλ̃B,aa + 2papAλ̃B,aA + p2
Aλ̃B,AA)

+ O(ε2). (42)



ESSes such that all µ’s are equal and all λ’s are equal are called

ideal free.

Under the (commonly made, but silly) proportionality restriction

λ(X) = θµ(X),

θ fixed, the ideal free property of ESSes appears as consequence of the as-
sumption that there are no genetic constraints, i.e., any allowed phenotype
can occur through mutation.

Proof : Whenever, say, λ(Xaa) = θµ(Xaa) < λ(XaA) = θµ(XaA), a mutant at
some other locus that changes Xb,aa = Xaa into XB,aa = XaA can invade.

Without the proportionality restriction a similar argument applies when the
sexes are separate, and male and female traits can vary independently due
to sex dependent gene expression:

X = (Xmale, Xfemale), and λ(X) = λf(Xfemale), µ(X) = µm(Xmale).



The term ”ideal free”, originates from behavioural ecology (Fretwell and
Lucas 1970; Bulmer 1994).

The etymology comes from the fact that under the commonly made pro-
portionality restriction the ideal free property appears as consequence of the
assumption that there are no genetic constraints, i.e., any allowed phenotype
can occur through mutation.

Without the proportionality restriction this argument is no longer valid
without further assumptions, since if, say, λaa and µaa are both lowest, there
is in general no need that there exist a mutant that improves both.

The most important special case where a similar argument applies is when
(i) the sexes are separate, and male and female traits can vary independently
due to sex dependent gene expression and (ii) there are no genetic constraints.

The previous considerations imply that any ideal free genetically dimor-
phic ESS can be found through the use of the simple averaged Shaw-Mohler
formula (42).



A modifier Adaptive Dynamics

Modifiers, i.e., mutants on other loci, generically to be referred to as B, with b
as resident and B as mutant, are supposed to effect the following phenotypic
changes:

XaabB = Xaa + εZaa, XaAbB = XaA + εZaA, XAAbB = XAA + εZAA,

where Xaa = Xaabb etc..

Then

ln(R0,B) = ε
∑

AA=aa,aA,AA

[
∂R0,B

∂µAA

∂µ

∂XAA
(Xaa, XaA, XAA)+

∂R0,B

∂λAA

∂λ

∂XAA
(Xaa, XaA, XAA)

]
ZAA + O(ε2).

(43)



It is now possible to formulate an adaptive dynamics through modifier effects
in (Xaa, XaA, XAA)-space.

The appropriate selection gradient corresponds to the combination of the
three terms, for AA = aa, aA,AA, between the square brackets.



Genetic resident dimorphisms for which the selection gradient is 0 are
called evolutionarily singular.

As modifiers are supposed to have only small effect, it may be assumed
that XaaBB ≈ Xaa + 2Zaa, etc., and that, away from evolutionarily singu-
lar resident combinations and population dynamical bifurcations, invasion
implies fixation (Geritz et al. 2002; Dercole 2002).

This means that the direction of evolution is essentially determined by the
selection gradient and the distribution of mutational steps in (Xaa, XaA, XAA)-
space.

To see whether evolutionarily singular dimorphisms are impervious to
invasion and therefore can be classified as ESSes, additional tools are needed.



For modifiers the genotype to phenotype map for the modifier allelic effects
Xb and XB = Xb + εV , is made conditional on the A-locus,

XA1A2,B1B2 = ΦA1A2(XB1 , XB2),

with ΦA1A2(X, Y ) = ΦA1A2(Y,X) and ΦA1A2 smooth, so that

∂ΦA1A2

∂X
(X, Y )

∣∣∣∣
X=Y

=
∂ΦA1A2

∂Y
(X, Y )

∣∣∣∣
X=Y

=: Φ′
A1A2

(X,X).

Therefore

XA1A2,bB = ΦA1A2(Xb, Xb + εV ) = XA1A2,bb + εΦ′
A1A2

(Xb, Xb)V + O(ε2),

XA1A2,BB = ΦA1A2(Xb + εV,Xb + εV )

= XA1A2,bb + 2εΦ′
A1A2

(Xb, Xb)V + O(ε2),

or, after renaming Φ′
A1A2

(Xb, Xb)V + O(ε) =: Z,

if XA1A2,bB −XA1A2,bb = εZA1A2 , then XA1A2,BB −XA1A2,bb ≈ 2εZA1A2 .



If the set of trait values realisable by mutants is connected, a genetic dimor-
phism (a,A) is impervious to invasion by any modifiers, if

• the dimorphism is uninvadable by pseudo-alleles, consisting of an allele
on a different locus, inexorably linked to the A-locus, and

• for all mutants on other loci, generically to be called B, as opposed to
a resident allele b,

1 >
1

2
(qaµ̃B,aa + paλ̃B,aa + qAµ̃B,AA + pAλ̃B,AA)

− 1

4
[(qaµ̃B,aa + paλ̃B,aa)(qAµ̃B,AA + pAλ̃B,AA)

− (qaµ̃B,aA + paλ̃B,aA)(qAµ̃B,aA + pAλ̃B,aA)]

− 1

8
[(paqA − pAqa)[(qAµ̃B,aA + pAλ̃B,aA)(µ̃AAλ̃aA − λ̃AAµ̃aA)

− (qaµ̃B,aA + paλ̃B,aA)(µ̃aaλ̃aA − λ̃aaµ̃aA)]

− 1

16
(paqA − pAqa)

2(µ̃aaλ̃aA − λ̃aaµ̃aA)(µ̃AAλ̃aA − λ̃AAµ̃aA).

(44)



When invasion by pseudo-alleles is possible, or mutations are possible on
some freely recombining B-locus such that inequality (44) holds good in the
opposite direction, the evolutionarily singular genetic dimorphism is not an
ESS.



The first term at the right hand side of (44) is once again the averaged
Shaw-Mohler formula familiar from the previous subsection. Otherwise (44)
is substantially different.



In the case of candidates for ideal free ESSes, imperviousness to any invasion
by (pseudo-)alleles implies also guarantees imperviousness to invasion by
alleles on other loci.

Therefore, ideal free Evolutionarily Stable genetic dimorphisms are charac-
terisedd by the fact that the Shaw-Mohler expression

1

2
(paµ̃(Xαa, Ee) + pAµ̃(XαA, Ee) + paλ̃(Xαa, Ee) + pAλ̃(XαA, Ee)) (45)

is maximised as a function of (Xαa, XαA) at (Xaa, XaA), and at (XaA, XAA),
while in addition the following population dynamical equilibrium conditions
are satisfied

λ(Xaa, Ee) = λ(XaA, Ee) = λ(XAA, Ee) = 1 (46)

µ(Xaa, Ee) = µ(XaA, Ee) = µ(XAA, Ee) (47)

together with, say,

Ee = F

( ∑
A1,A2=a,A

g1(XA1A2)pA1pA2N,
∑

A1,A2=a,A

g2(XA1A2)pA1pA2N

)
. (48)



Notice that

1

2
(paµ̃(Xαa) + pAµ̃(XαA) + paλ̃(Xαa) + pAλ̃(XαA)) (49)

is maximised as a function of (Xαa, XαA) at (Xaa, XaA), and at (XaA, XAA),
if and only if

1

2
(p2

aµ̃(X) + 2papAµ̃(Y ) + p2
Aµ̃(Z) + p2

aλ̃(X) + 2papAλ̃(Y ) + p2
Aλ̃(Z)) (50)

is maximised as a function of (X, Y, Z) at (Xaa, XaA, XAA).



AB = AB,sel + AB,rec, AB,sel =

[
AB,sel,a 0

0 AB,sel,A

]
,

AB,rec =
r

2




−µ̃B,aA

−λ̃B,aA

µ̃B,aA

λ̃B,aA


 [qA pA − qa − pa].



The characteristic equation of AB can be relatively easily obtained by
making use of the decomposition (34):

If a column vector is added to one of the columns of a matrix, the de-
terminant of the resulting matrix equals the sum of the original determinant
plus the determinant of a matrix constructed from the original matrix by
replacing the changed column with the column vector that was added.

The determinant of a matrix of which one of the columns can be expressed
as a linear combunation of the remaining columns, equals zero.

These two facts combine into the result that the determinant of a matrix
F = G + H with rank(H) = 1 equals the determinant of G plus a sum over
the determinants of all matrices constructed from G by replacing gij with
hij, and replacing the other components on i-th row and j-th column of G
with zeros. In the case of AB − RI = (AB,sel − RI) + AB,rec choosing i and
j in the lower left and upper right blocks of AB,sel − RI produces a matrix
with determinant 0. Making use of these facts gives



PB(R) = det(AB − RI) = DaDA +
r

2
(CADa + CaDA), (51)

with

Da(R) = det(AB,sel,a − RI), DA(R) = det(AB,sel,A − RI),

and

Ca(R) = (qAµ̃B,aA + pAλ̃B,aA)R +
1

2
(paqA − pAqa)(λ̃B,aAµ̃B,aa − µ̃B,aAλ̃B,aa),

CA(R) = (qaµ̃B,aA + paλ̃B,aA)R +
1

2
(pAqa − paqA)(λ̃B,aAµ̃B,AA − µ̃B,aAλ̃B,AA).
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PB, and hence R0,B depends on the recombination fraction r.

For modifiers with small effect, which generally are the ones of most
interest, (38) to (40) already show that this dependence becomes negligible,
at least up to first order in the mutational change.

However, from a general evolutionary perspective it is also of interest
whether a given genetically realised phenotypic polymorphism is impervious
to mutations of any type.

Therefore it pays to study the characteristic equation PB = 0 in a little
more depth.



1

P

R



As the interest is in imperviousness to any mutation, it is only necessary
to look at those values of r that engender the highest R0,B.

R0,B equals the rightmost intersection of the graph of PB with the R-axis.

(4) shows that the leading coefficient in PB is positive.

Therefore P ′
B(R0,B) is positive, which in turn tells that decreasing PB as far

as possible by changing r leads to the largest possible value of R0,B.

From (4) it can also be seen that PB is linear in r. This implies that
PB(R) considered as a function of r takes its extreme values at the extremes
of its domain, i.e., at r = 0 and r = 1

2
. Therefore it is only necessary to

study PB = 0 for these two values of r.



The invasion of modifiers for which r = 0 is comparable to the invasion
of a new allele on the A-locus. B can either be linked to a or to A.

So there are two new pseudo-alleles that have to be considered, one with
Xαa = XB,aa and XαA = XB,aA and one with Xαa = XB,aA and XαA =
XB,AA. This is reflected in the decomposition of PB(R) = Da(R)DA(R).

The dimorphism a with A is impervious to invasion by fully linked mod-
ifiers if any such modifier cannot invade according to (22).

Remains the study of PB for r = 1
2
. Working out (4) gives



Pb(R) = R4 − 1

2
(qaµ̃B,aa + paλ̃B,aa + qAµ̃B,AA + pAλ̃B,AA) R3

+
1

4
[(qaµ̃B,aa + paλ̃B,aa)(qAµ̃B,AA + pAλ̃B,AA)

− (qaµ̃B,aA + paλ̃B,aA)(qAµ̃B,aA + pAλ̃B,aA)] R2

+
1

8
[(paqA − pAqa)[(qAµ̃B,aA + pAλ̃B,aA)(µ̃AAλ̃aA − λ̃AAµ̃aA)

− (qaµ̃B,aA + paλ̃B,aA)(µ̃aaλ̃aA − λ̃aaµ̃aA)] R

+
1

16
(paqA − pAqa)

2(µ̃aaλ̃aA − λ̃aaµ̃aA)(µ̃AAλ̃aA − λ̃AAµ̃aA).

(52)



At first sight (52) only intimidates. However, the earlier argument makes
clear that for ascertaining whether a particular genetic dimorphism produces
an environment that shields it from invasion, one only has to study the sign
of PB(1).



PB(R) = det(AB − RI) = DaDA +
r

2
(CADa + CaDA), (51)

with

Da(R) = det(AB,sel,a − RI), DA(R) = det(AB,sel,A − RI),

and

Ca(R) = (qAµ̃B,aA + pAλ̃B,aA)R +
1

2
(paqA − pAqa)(λ̃B,aAµ̃B,aa − µ̃B,aAλ̃B,aa),

CA(R) = (qaµ̃B,aA + paλ̃B,aA)R +
1

2
(pAqa − paqA)(λ̃B,aAµ̃B,AA − µ̃B,aAλ̃B,AA).
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In the case of an ideal free candidate ESS, the condition that this candi-
date is impervious to invasion by pseudo-alleles imparting certain phenotypes
implies that for any modifier imparting the same phenotypes, both Da(1) > 0
and DA(1) > 0. Moreover, paqA − pAqa = 0, so Ca(1) > 0 and CA(1) > 0.
Therefore, PB(1) increases in r, and thus, if PB(1) > 0 for r = 0, then
PB(1) > 0 for all r > 0. In other words, if the invasion of pseudo-alles with
different phenotypes is ruled out, then invasion by any other modifiers is
ruled out as well.



On the other hand:

In the case of candidates for ideal free ESSes the last two terms of (44)
become zero; moreover, (44) can be simplified by writing

µ̃B,A1A1 − µ̃b,A1A1 =: ∆µ̃A1A1 , λ̃B,A1A1 − λ̃b,A1A1 =: ∆λ̃A1A1 . (53)

After some rearangements this leads to

0 > [p2
a(∆µ̃aa + ∆λ̃aa) + 2papA(∆µ̃aA + ∆λ̃aA) + p2

A(∆µ̃AA + ∆λ̃AA)]

+
1

2
papA [(∆µ̃aA + ∆λ̃aA)2 − (∆µ̃aa + ∆λ̃aa)(∆µ̃AA + ∆λ̃AA)]. (54)

How does this square with the previous argument???


