
Branching processes

Are: Models for population dynamics,
that incorporate inter-individual variation
in offspring numbers

Used: To study dynamics of small populations

Give information about:

•Establishment success
•Initial population growth
•Development of population structure and size

Application in adaptive dynamics:

•Probability of successful invasion of a
specific type of mutant
•Expected time until invasion success



BPs in the context of AD

If mutants reproduce independently: classical BPs
can be used

If mutants do not affect the resident dynamics:
 Resident population determines environment of BP

•constant: ordinary BP
•changing: inhomogeneous BP

•deterministic: e.g.periodic or monotone
changes in resident density
•random: e.g. through external factors or
demographic stochasticity of residents
•chaotic: model as random?

If mutants do affect the resident dynamics or do not
reproduce independently: BP with population size
dependence. Not much results yet.



The archetypal branching process 
(Galton-Watson):

•Discrete reproduction periods (‘generations’;
no overlap or parents equivalent to offspring)
•1 type of individuals, with identical offspring
distribution
•They do not affect each other’s reproduction
•Distributions of offspring numbers do not
change in time

Generation n Generation n+1

Adaptive dynamics context:
Resident sets a fixed background
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iξ independent identically distributed r.v.’s
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Expected number of offspring per individual:

If [ ]Pr 1 1ξ = < then:

1m >
probability of extinction
smaller than 1
‘supercritical process’

1m <
always extinction,
finite expected time to
extinction
‘subcritical process’

1m =
always extinction,
infinite expected time
to extinction
‘critical process’



For supercritical processes there are two
possibilities:
Extinction or Exponential growth

[ ]log nz

n

Extinction probability:
Q = expected proportion of processes
started by 1 individual that goes extinct

Interpretation: 
growth up to a ‘safe size’
being able to invade  a resident population
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Adaptive dynamics

Chance per period of birth of a mutant with trait
value x :��(x)

Extinction probability of the mutant BP: Q(x) 

Chance per period of a successful invasion by
that type of mutant: µ (x)(1−Q(x))
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Expected time until a successful invasion:

Probability trait value z  is the lucky first:
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How to calculate Q?

Generating function of the offspring distribution:
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Then Q is the smallest non-negative root of the
equation:
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Example: geometric offspring distribution
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BUT: 

•not always possible to find an explicit expression for Q
•sometimes  no completely specified offspring
distribution
• robust results wanted

Approximations ( using only first 2 moments of ξ ):
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If furthermore there is a family of offspring distributions
such that
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Inhomogeneous BP

( )m n ( )1m n +

Expected numbers of offspring:

Difference between deterministic and random variation.

Adaptive dynamics: Resident background
not fixed (but not affected by mutant).



Sufficient condition for Q = 1:
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Deterministic environments

General rules for criticality are not available. 
Depends  very much on type of variation.

Specific cases can be worked out. Two examples: 
monotonic, periodic



Monotonically changing mn: lim n
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Periodic with period T >1:
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M > 1: Q < 1

M ≤ 1: Q = 1

M = product

M = product
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Define:

Then:



Periodic BPs can be transformed to
standard BPs

n

mn

z0T z1T

Pr[ξ = k] in transformed process = probability that
an individual alive at time 0 has k living descendants
at time T-1 in original process.

(for such processes Q can be calculated as before)



BUT Q is the extinction chance if
an invasion takes place at time 0.
The extinction chance of a BP now
depends on the time of invasion.

Example:

m > 1

n
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higher success chance



Calculation of Qt

Generating function of offspring distribution of
individuals in the k-th generation:
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Generating function of population size in the k-
th generation, given invasion of a single
individual at time t < k :
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Adaptive dynamics

Chance per time unit of birth of a mutant with
trait value x:��t(x)
(also varies in time if dependent on resident
population size)

Chance per time unit of a successful invasion by
that type of mutant at time t:

Expected time until a successful invasion:
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Chance that a mutant with trait value z is the
first to invade:
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Inhomogeneous BP: random environment

Extinction probability now is a random variable itself

Different
realizations of
sequences:
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 Expected proportion of BPs
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If

For stationary ergodic mt:

E log mt( )[ ]< ∞

E log 1 − Pr ξ t( ) = 0( )( )[ ]< ∞

Then

( ) [ ]E log 0 Pr 1 1tm Q< ⇔ = =  
E log mt( )[ ]> 0 ⇔ Pr Q < 1[ ]= 1

Q = Pr extinctionΩm[ ]
Ωm σ-algebra generated by m0,m1, ...

heuristic notation: ��Q = Pr extinctionm0 ,m1,�[ ]



Calculation of distribution and moments of Q 

Define: ��Qt = Pr extinctionmt ,mt +1,�[ ]

Then Qt = f t ,Qt +1( )

E.g. for a Poisson offspring distribution:

Qt = exp −mt 1 − Qt+1( )[ ]

Q = lim
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etc.

Q-values converge to a stationary distribution

Iteration method:

(There are also approximations for E[Q], 
based on the moments of m)



Adaptive dynamics

Chance of successful invasion by that
type of mutant at time t
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with µt and Qt random variables

Expected time until a successful invasion:

( ) ( )( )
1 1

1 E 1 1
n

t t
n xt

x Q x
∞

= =

  
+ − µ −  

  
∑ ∑∏

Chance per time unit of birth of a mutant with
trait value x:��t(x)
(also varies randomly in time if dependent on
resident population size)

Chance that a mutant with trait value z is the
first to invade:
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Adaptive dynamics-continued

NB subsequent Qt are not independent.
Their autocorrelation depends on the properties of the
environmental sequence.

For  alternating  mt they can become
negatively autocorrelated.
In such environments, increasing lags
between invasions is disadvantageous.

For independent or positively autocorrelated mt,
the Qt  are positively autocorrelated.
This implies that increasing lags between
invasions increases the chance of success.

What does this imply for the effect of mutation
chance on invasion success?



Multitype processes

Several different types of individuals, e.g.:

•male/female
•age (generation overlap)
•location
•genotype (AD: several types of mutant heterozygotes
in polymorphic resident population)

Time: n n+1

type 2

type 1

( )1 2, T
n nz z ( ) ( )( )1 1 1 2,

T

n nz z+ +

Numbers of offspring of different individuals independent.
Offspring distributions may depend on parent’s type



There are two kinds of multitype
processses:

Indecomposable: every type  of individual can
eventually have progeny of any other type. E.g.
genotypes in well-mixed populations.
(These can be periodic, but periodic processes
can be transformed to non-periodic ones, so we
only consider non-periodic processes.)

Decomposable: there are (groups of) types that can
not produce types belonging to other groups.
E.g. females produce male/female offspring; males
‘produce’ only male offspring (themselves).



Expected numbers of offspring are given by the 
‘mean matrix’ M with elements:

mhj h=1, ..., d; j = 1, ..., d

= expected nr of offspring of type j that is
produced by an individual of type h

ρ = dominant eigenvalue (Perron root) of M

1ρ <

Extinction with probability one if:

1ρ >Positive establishment chance if:

or 1ρ =
and each type can eventually have
progeny of a type that has a positive
chance of having no offspring



Extinction probability : ( )1, , T
dQ Q Q= �

Qh = extinction probability if initially there is
one ancestor of type h

generating function: ( ) ( ) ( )( )1 , ,
T
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If ρ > 1: there is one such Q



Approximation for slightly
supercritical indecomposable processes

Mean matrix (ε > 0):

( )( ) , 1

d
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M mε =
= ε

and suppose that for all ε  there is a n(ε) such

that all entries of ( )nM ε
ε are positive

with dominant eigenvalue  ρ(ε) > 1 ,  ρ(ε) �1
as ε �0

(i.e. Mε  is positively regular)



Let u(ε) be the corresponding left eigenvector (stable
state distribution) and v(ε) the right eigenvector
(reproductive value), with:
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then, as 
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Adaptive dynamics

Chance per period of a mutant of type h, with
trait value (or allele effect) x: µh(x)

Chance of successful invasion by a
mutant with trait value x:

Expected time until a successful  invasion:
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And more...

•Multitype inhomogeneous processes.
•If mutants affect resident population size or
other resources, mutant reproduction
depends on mutant population size (and
maybe history). (Some results by Klebaner,
Jagers and Sagitov: can produce slower than
exponential growth rates in near-critical
processes.)
•Bi-sexual BPs  (Alsmeijer)
•Sibling dependence(Olofsson)


