Géza Meszéna

Eötvös University

ETI seminar, 2022

Why don't we trust theory in ecology?

Why people don't trust theory in ecology?

- Theories oversimplify everything.
- You never know, whether the assumptions are justified.
- You could have many different models and they will give you many different results.
- You could have different models explaining the same outcome.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- You never will be sure, if parameter choices are correct.
- You can argue both ways citing models.
- Etc.

Something seems to be wrong here.

And what about empirical ecology?

Look for patterns and test hypotheses before doing theory!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

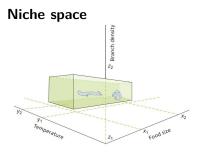
- Coexistence of similars, or the different?
- Intermediate disturbance hypothesis?
- Productivity-diversity relationship?
- Stress dominance hypothesis?

Etc.

Often: Yes and No or It depends

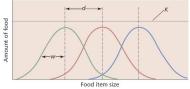
Something seems to be wrong here, too.

What is wrong with theory?


- Theoretical ecology is a zoo of independent models.
- Models are considered distinct. Their relationships are not asked.
- You don't know, if the conclusions are general, or highly dependent on the specific assumptions.
- Even when theory is well-developed in a subfield of ecology, it lacks connections outside the subfield.

Goal:

Consistent theory as a basis of ecology, as a discipline. A coherence of the different levels of discussion.


Introduction

Good Old Days - Hutchinson's niche in the '60s

Species partition an abstract space! Niche axes: scenopoetic & bionomic Hutchinson (1957, 1978)

Resource utilization overlap

Competition \sim utilization overlap:

$$a_{ij} = \int u_i(R)u_j(R)dR$$

MacArthur & Levins (1967)

・ロト・日本・日本・ 日本・ 日本・ 日本

Age of Doubts – decline of Lotka-Volterra in the '80s

- What the heck 'niche' and 'niche axis' mean?
- Quality, or concentration on the axis?
- How can I measure e.g. niche width?
- Can I measure *anything* in this theory?
- Validity of Gause's principle?
- Is there a limit for similarity?
- Non-competitive interactions?
- Fluctuations?
- Disturbances?
- Isn't Lotka-Volterra too far from the real world?
- Aren't all models too far from the real world?
- Isn't ecology too complex for *any* theory?

Theory Ladder

Simple intuitive models? or Complex realistic models?

Neither of them connect the specific to the conceptual! Instead: Theory Ladder

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1 Conceptual level
- 2 More specific
- 3 Even more specific
- 5 As specific, as you wan

Levels should be mathematically related!

Theory Ladder

Simple intuitive models? or Complex realistic models?

Neither of them connect the specific to the conceptual! Instead: Theory Ladder

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- 1 Conceptual level
- 2 More specific
- 3 Even more specific
- 4
- 5 As specific, as you want.

Levels should be mathematically related!

Top level competition theory

Competitve Exclusion and Niche Space

Competitve exclusion

Version 1: # species ≤ # resources (MacArthur & Levins, 1964)
Generally not true, zillions of counter-examples.
Version 2: # species ≤ # regulating variables (Levin, 1970)
Mathematically true, but not directly predictive.
What counts, as regulating variable?

Your choice:

Read the zillions of papers, learn that Ver1 is unreliable and remain clueless about what is true.

Rely on Ver2, and understand that the problem has a general structure. Use this understanding in studying your system.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The 2nd one is the correct high level theory.

Empty without the lower levels.

Top level competition theory

Competitve Exclusion and Niche Space

Competitve exclusion

Version 1: # species ≤ # resources (MacArthur & Levins, 1964)
Generally not true, zillions of counter-examples.
Version 2: # species ≤ # regulating variables (Levin, 1970)
Mathematically true, but not directly predictive.
What counts, as regulating variable?

Your choice:

- Read the zillions of papers, learn that Ver1 is unreliable and remain clueless about what is true.
- Rely on Ver2, and understand that the problem has a general structure. Use this understanding in studying your system.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The 2nd one is the correct high level theory.

Empty without the lower levels.

Top level competition theory

Competitve Exclusion and Niche Space

Competitve exclusion

Version 1: # species ≤ # resources (MacArthur & Levins, 1964)
Generally not true, zillions of counter-examples.
Version 2: # species ≤ # regulating variables (Levin, 1970)
Mathematically true, but not directly predictive.
What counts, as regulating variable?

Your choice:

- Read the zillions of papers, learn that Ver1 is unreliable and remain clueless about what is true.
- Rely on Ver2, and understand that the problem has a general structure. Use this understanding in studying your system.

The 2nd one is the correct high level theory.

Empty without the lower levels.

Top level competition theory

Competitve Exclusion and Niche Space

Regulation and Adaptation

Regulating variable:

DEFINITION An environmental variable is called regulating, iff

- affects the population(s) AND
- affected by the population(s).

Single regulating variable -> Competitive exclusion, i.e., adaptation

- *K*-maximization (MacArthur, 1962)
- *R**-minimization (Tilman, 1980)
- Pessimization (Metz et al., 2008)

Multiple regulating variables -> Potential for coexistence Diversity of regulation allows diversity of adaptation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへぐ

Top level competition theory

Competitve Exclusion and Niche Space

Regulation and Adaptation

Regulating variable:

DEFINITION An environmental variable is called regulating, iff

- affects the population(s) AND
- affected by the population(s).

Single regulating variable -> Competitive exclusion, i.e., adaptation

- *K*-maximization (MacArthur, 1962)
- *R**-minimization (Tilman, 1980)
- Pessimization (Metz et al., 2008)

Multiple regulating variables -> Potential for coexistence Diversity of regulation allows diversity of adaptation.

Top level competition theory

Competitve Exclusion and Niche Space

Regulation and Adaptation

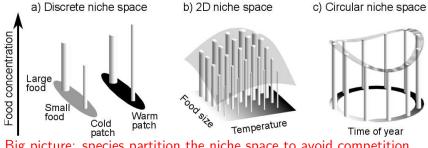
Regulating variable:

DEFINITION An environmental variable is called regulating, iff

- affects the population(s) AND
- affected by the population(s).

Single regulating variable -> Competitive exclusion, i.e., adaptation

- *K*-maximization (MacArthur, 1962)
- R*-minimization (Tilman, 1980)
- Pessimization (Metz et al., 2008)


Multiple regulating variables -> Potential for coexistence Diversity of regulation allows diversity of adaptation.

(日) (日) (日) (日) (日) (日) (日) (日)

<u>Top level competition theory</u>

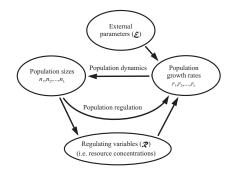
Competitve Exclusion and Niche Space

What is niche space

Big picture: species partition the niche space to avoid competition.

- Discrete and continuous.
- Resource and habitat segregation
- Temporal niche segregation.

(Similar with other regulating factors, instead of resources.) - 34


Top level competition theory

Competitive Exclusion and Limiting Similarity

Steps LV to genetral theory

Resources ⇒ Regulating variables

- 2 Lotka Volterra ⇒ linearization of dynamics
- 3 Resource utilization ⇒ impact & sensitivity
- 4 Limit of similarity ⇒ Robustness of coexistence

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Top level competition theory

Competitive Exclusion and Limiting Similarity

Steps LV to genetral theory

- Resources ⇒
 Regulating variables
- 2 Lotka Volterra ⇒ linearization of dynamics
- 3 Resource utilization ⇒ impact & sensitivity
- 4 Limit of similarity ⇒
 Robustness of coexistence

Any model can be linearized! Lotka-Volterra competition:

$$r_i = r_{0i} - \sum_j a_{ij} n_j$$

Generalized competition coefficient:

$$a_{ij} = -rac{\partial r_i}{\partial n_j}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Top level competition theory

Competitive Exclusion and Limiting Similarity

Steps LV to genetral theory

- Resources ⇒ Regulating variables
- 2 Lotka Volterra ⇒ linearization of dynamics
- 3 Resource utilization \Rightarrow impact & sensitivity
- 4 Limit of similarity ⇒ Robustness of coexistence

Classical niche theory (ad hoc):

$$a_{ij} \sim \sum_{k} u_{ik} u_{jk}$$
Resource utilization

Proposed theory (linearization):

$$-a_{ij} = \frac{\partial r_i}{\partial n_j} = \sum_k \frac{\partial r_i}{\partial \mathcal{R}_k} \frac{\partial \mathcal{R}_k}{\partial n_j} = \mathbf{S}_j \cdot \mathbf{I}_j$$

Sensitivity of Species *i*
Impact of Species *j*

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Top level competition theory

Competitive Exclusion and Limiting Similarity

Steps LV to genetral theory

- Resources ⇒ Regulating variables
- 2 Lotka Volterra ⇒ linearization of dynamics
- 3 Resource utilization ⇒ impact & sensitivity
- 4 Limit of similarity ⇒ Robustness of coexistence

Equilibrium:

$$r(\mathcal{R}(n), \mathcal{E}) = 0$$

Perturbation:

$$\frac{\partial \boldsymbol{n}}{\partial \boldsymbol{\mathcal{E}}} = \boldsymbol{a}^{-1} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{\mathcal{E}}}$$

Robustness:

 $\det \boldsymbol{a} = \det(\boldsymbol{S}_i \boldsymbol{I}_j)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

must be large! ⇒ Species should be different!

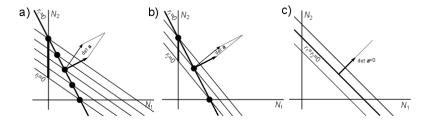
Top level competition theory

Competitive Exclusion and Limiting Similarity

Steps LV to genetral theory

- Resources ⇒
 Regulating variables
- 2 Lotka Volterra ⇒ linearization of dynamics
- 3 Resource utilization \Rightarrow impact & sensitivity
- 4 Limit of similarity ⇒ Robustness of coexistence

Larger similarity in Impact or Sensitivity ↓ Weaker robustness of coexistence


[No absolute limit of similarity!]

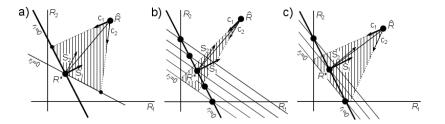
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Top level competition theory

Competitive Exclusion and Limiting Similarity

Robustness of coexistence, Lotka-Volterra

Robustness of coexistence is lost when det $a \rightarrow 0$, i.e. when the populations become similar in their interactions!


▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Conclusion of LV is model-independent!

Top level competition theory

Competitive Exclusion and Limiting Similarity

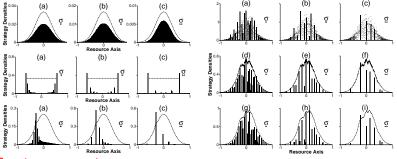
Robustness of coexistence, Tilman/Leibod's model

Robustness of coexistence is lost when

- either the population's impact on,
- or the their sensitivity towards,

the regulating variables becomes similar!

See Thomas Koffel's lecture on non-competitve interactions!


(日)

Top level competition theory

Competitive Exclusion and Limiting Similarity

Continuous coexistence or limiting similarity?

Lotka-Volterra competition a la MacArthur & Levins (1967)

Continuous coexistence:

with exactly Gaussian carrying capacity & competition kernel. Except the immediate vicinity of continuous coexistence: Discretization! Segregation by niche width! Szabó & Meszéna (2006), Barabás & Meszéna (2009)

Top level competition theory

Competitive Exclusion and Limiting Similarity

Continuous coexistence or limiting similarity?

Theorem

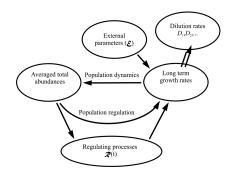
Coexistence of a continuum of species is structurally unstable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Sketch of Proof

- **a** is infinite dimensional
- continuity -> a is compact
- **a**⁻¹ does not exist

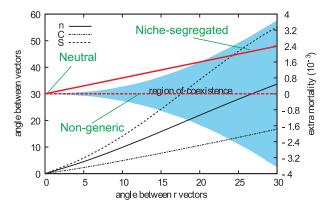
q.e.d.


Gyllenberg & Meszéna (2005), Barabás et al. (2012)

Down to the ladder

Structured population in an inhomogeneous and fluctuating environment?

Dimension reduction:


Pick up the "long-term growth rate" dimensions!

- Introduce a dilution rate for each population!
- Study the system, as a function of the dilution rates!
- Invert the functions to get a "density-dependent" description!
- q.e.d.

Down to the ladder

Spatial segregation between two patches

EITHER strictly neutral OR sufficiently niche-segregated!

Szilágyi & Meszéna (2009)

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - の Q ()

We need complicated formulas for a theory lecture

General scheme:

$$\sigma_i = -\sum_{j=1}^S a_{ij}^{-1} z_j,$$

Simple case:

$$\sigma_i = \frac{\partial N_i}{\partial \mathbb{E}}, \qquad \mathsf{a}_{ij} = \sum_{\mu} \underbrace{\frac{\partial r_i}{\partial \mathcal{R}_{\mu}}}_{\mathcal{S}_{i,\mu}} \frac{\partial \mathcal{R}_{\mu}}{\partial N_j}, \qquad z_j = \frac{\partial r_j}{\partial \mathbb{E}}.$$

Periodic environment:

$$\sigma_{i} = \frac{1}{N_{i}(0)} \frac{\partial N_{i}(0)}{\partial \mathbb{E}}, \quad a_{ij} = -\delta_{ij} + \prod_{t=T-1}^{0} \left(\delta_{ij} + \sum_{\mu} \underbrace{\frac{\partial r_{i}(t)}{\partial \mathcal{R}_{\mu}(t)}}_{S_{i,\mu}(t)} \underbrace{\frac{\partial \mathcal{R}_{\mu}(t)}{\partial N_{j}(t)} N_{j}(t)}_{\mathcal{I}_{j,\mu}(t)} \right), \quad z_{j} = \sum_{t=0}^{T-1} \frac{\partial r_{j}(t)}{\partial \mathbb{E}},$$

Barabás et al. (2014)

Down to the ladder

Even more

General structured populations

$$\sigma_{i} = \frac{\partial N_{i}}{\partial \mathbb{E}}, \quad \mathbf{a}_{ij} = \sum_{\mu} \underbrace{\left(\sum_{a,b} v_{i,a} \frac{\partial A_{i,ab}}{\partial \mathcal{R}_{\mu}} \mathbf{w}_{i,b}\right)}_{S_{i,\mu}} \underbrace{\sum_{\nu} \left(\delta_{\mu\nu} - \frac{\partial \mathcal{G}_{\mu}}{\partial \mathcal{R}_{\nu}}\right)^{-1} \left(\sum_{c} \frac{\partial \mathcal{R}_{\nu}}{\partial N_{j,c}} \mathbf{w}_{j,c}\right)}_{\mathcal{I}_{j,\nu}}$$

$$z_{j} = \sum_{a,b} v_{j,a} \frac{\partial A_{j,ab}}{\partial \mathbb{E}} w_{j,b} + \sum_{\mu,\nu} \left(\sum_{a,b} v_{i,a} \frac{\partial A_{i,ab}}{\partial \mathcal{R}_{\mu}} w_{i,b} \right) \left(\delta_{\mu\nu} - \frac{\partial \mathcal{G}_{\mu}}{\partial \mathcal{R}_{\nu}} \right)^{-1} \frac{\partial \mathcal{G}_{\nu}}{\partial \mathbb{E}}$$

$$\begin{aligned} \mathcal{G}_{\mu}\left(\mathcal{R}_{\nu},\mathbb{E}\right) = \\ = \sum_{j} \sum_{a,b,c} \left(\frac{n_{j}}{\sum_{d} q_{j,d} w_{j,d}} \frac{\partial \mathcal{R}_{\mu}}{\partial n_{j,a}} \sum_{k=2}^{s_{j}} \frac{1}{\lambda_{j} - \lambda_{j}^{k}} \left(w_{j,a}^{k} - \frac{\sum_{e} q_{j,e} w_{j,e}^{k}}{\sum_{f} q_{j,f} w_{j,f}} w_{j,a} \right) v_{j,b}^{k} \right) A_{j,bc}\left(\mathcal{R}_{\nu},\mathbb{E}\right) w_{j,c} \end{aligned}$$

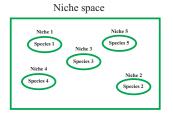
Szilágyi & Meszéna (2009); Barabás et al. (2014)

■ Trophic network: food types & predation pressures

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Stochastic environment: $Cov(\boldsymbol{S}_i(t), \boldsymbol{I}_j(t))$
- Dispersal limitation: pair approximation

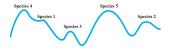
Why speciate?


Darwin:

- Speciation is driven by the advantage of being different.
- No clue on reproductive isolation.
- Allopatric (Mayr) speciation:
 - No way for divergent evolution in a panmictic population.
 - Populations must be geographically separated first!
- Ecological (competitive, adaptive, etc.) speciation:
 - Reproductive isolation is a consequence of divergent selection.
 - Parsimony: ecological possibility for diversification drives diversification.

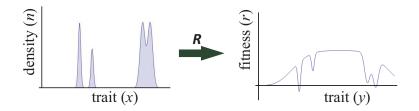
Mallet: Mayr's view of Darwin: was Darwin wrong about speciation? (2008) Nosil: Ecological Speciation. (2012)

Why are there so many kinds of animals?


Problem: different pictures in ecology and evolution:

Species occupy different *niches*.

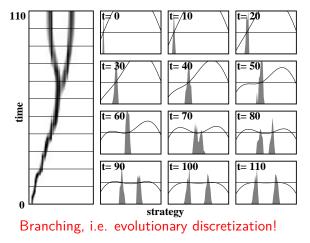
Conceptual clarification is needed!


Adaptive landscape

Species occupy different *peaks of landscape*.

・ロト・日本・日本・日本・日本・日本

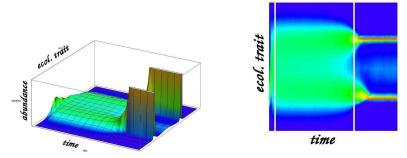
Regulated landscape


Competition: I eat your food and therefore reduce your fitness.

Competition and evolution to avoid competition are meaningless on a landscape which do not take into account the biotic feedback.

Meszéna (2005); Meszéna, Gyllenberg, Jacobs & Metz et al. (2005)

Evolutionary branching for clonal organism

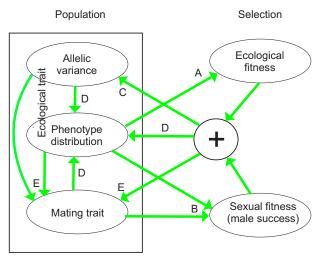

MacArthur & Levins ecology + mutation; clonal inheritance

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Gertitz, Metz, Kisd &, Meszéna (1997)

Three phase speciation process

Three phases


First: fast to the middle, widened trait distribution

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Second: slow, gradual transition to bimodality
- Third: fast completion of segregation

Meszéna & Dieckmann, BioRxive

Feedback structure

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Debate on diversity

- Niche theory?
- Nonequilibrium?
- Chesson?
- Neutrality?
- Niche-neutrality?
- Large random a?

Only the first can be connected to adaptation, i.e. real biology.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Niche axes in rainforest

I.M.Turner The Ecology of Trees in the Tropical Rain Forest Empirical axes (Turner, 2001):

- Height at maturity
- Pioneer-climax

Model, Kohyama (1993):

- Size
- Gap dynamics

Why don't we say that forest diversity is understood, at least partially?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへで

To discuss: What determines species diversity?

Hypothesis: Emergence of species diversity requires:

Primary production and Niche segregation possibilities and Evolutionary time

- High primary production without niche segregation possibilities will not lead to diversification even on long run.
- Niche segregation structures are specific to the type of the ecosystem and is not always empirically understood.
- You will never test this hypothesis by statistical means.
- Instead you may want to understand the inner workings of the diverse ecosystems.

To discuss: What determines species diversity?

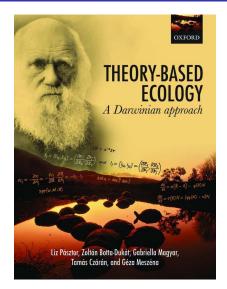
Hypothesis: Emergence of species diversity requires:

Primary production and Niche segregation possibilities and Evolutionary time

- High primary production without niche segregation possibilities will not lead to diversification even on long run.
- Niche segregation structures are specific to the type of the ecosystem and is not always empirically understood.
- You will never test this hypothesis by statistical means.
- Instead you may want to understand the inner workings of the diverse ecosystems.

Closing

Precise top level theory of niche segregation, which


- integrate ecology and evolution
- can be connected to detailed modeling precisely.
- No theory will spare you from studying the real thing: Figure out the niche structure of the different ecosystems!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Macroecological patterns?

Conclusion

Theory-Based Ecology: A Darwinian approach

Is there such thing, as theory-based ecology?

At least, we have a book on it...

イロト 不得 とう アイロト

-

Enjoy!!!

Thanks

Theory-Based Ecology

- Liz Pásztor
- Zoltán Botta-Dukát
- Tamás Czárán
- Gabriella Magyar

Adaptive Dynamics

- Hans Metz
- Mats Gyllenberg
- 🛯 Éva Kisdi

(Former) students

- András Szilágyi
- Gyuri Barabás
- Bianka Kovács

- Stefan Geritz
- Ulf Dieckmann

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Conclusion

Questions?

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ