Population genetics of speciation

Géza Meszéna
ELTE, MTA

EvolBiolDay, Szeged, 2019
Why discrete species?

Natural selection

• Variation
• Heredity
• Selection
(Usual summary of Darwin.)

Questions

• Why diversity?
• Why discrete variants?
• (Why sex?) [genes vs. individuals]
• Why reproductive isolation?
Speciation concepts, classical

• Darwin:
 It is advantageous to be different from the competitor.
 Fortunately, he was oblivious about diploid genetics. 😊

• Allopatric speciation (Mayr, mainstream in many circles)
 Species is defined by reproductive isolation. It can emerge in allopatry, as a genetic accident.
 Speciation has nothing to do with adaptation – not intrinsically, at least.
 Does not seem to be very parsimonious...
 Empirical support is weak...
Speciation concepts, new wave

- Adaptive speciation (theory)
 Driven by frequency-dependent selection.
 Corresponds to Darwin’s intuition.
 Not always taken seriously by population geneticist.

- Ecological speciation (empirical)
 Speciation is observed, as adaptation to a new ecological possibility; often with significant gene flow.

These two are actually the same thing.
Evolutionary branching of clonals

MacArthur-Levins type competitive Lotka-Volterra model with a 1D niche axis, „beak size”.

Fitness is affected by the population.

Evolution converge to a fitness minimum, induced by the population itself – and branches there.

Speciation?
Ecology behind: Continuous coexistence?

Gyllenberg & Meszéna (2005): Continuous coexistence is structurally unstable
Adaptive speciation (with Ulf Dieckmann)

Three phases
1. Initial adaptation
2. Slow loss of variance
3. Completion of isolation via sexual selection

Why the 2nd phase is so slow?
Map of interactions

Large locus number

Trait distribution and specific alleles become independent.
Population genetics of stabilizing selection

Analytic theory

\[
\frac{d \text{ allelic variance}}{dt} \sim \frac{\text{population averaged (fitness)}''}{\text{locus number}}
\]
Details
Summary: Why discrete species?

- Different regulations → different ecological possibilities (niches)
- Structure of regulating feedback allows discrete coexistence only.
- Sexual reproduction is able to maintain wide genetic variance. However: generically it will be under selection.
- Fitness minima (disruptive selection) → assortativity
- Fitness maxima (stabilizing selection) → decreasing allelic variance
- Assortativity + low segregation variance → reproductive isolation
- Sexual selection (unavoidable) → completion of isolation.
Diversity and speciation are adaptations to a world with multiple niches.

(And, you cannot reach to this conclusion without considering population regulation with a conceptual edge.)
Thanks

Speciation modelling
• Ulf Dieckmann

Adaptive dynamics
• Hans Metz
• Stefan Geritz
• Éva Kisdi

Coexistence theory
• Mats Gyllenberg
• Gyuri Barabás

Theory-Based Ecology
• Liz Pásztor
• Tom Czárán
• Zoltán Botta-Dukát
• Gabriella Magyar

Students
• Benjámin Márkus
• Bianka Kovács