Three-phase transition to reproductive isolation

Géza Meszéna (Eötvös University)
Ulf Dieckmann (IIASA)

Second European Conference on Speciation Research
Montpellier, 2013
Introduction

Inputs:

- Adaptive dynamics: selection for adaptive diversification!
- Dieckmann-Doebeli (1999) model (and others): selection for reproductive isolation!
- Analytically tractable model by Pennings et al. (2008): Reproductive isolation often remains intermediate, sexual selection may help, however.

Goal:
Re-investigate Dieckmann-Doebeli nearer to the quantitative genetics limit to understand the mechanism more clearly.
Three-phase transition to reproductive isolation

Intro

Introduction

Inputs:

- Adaptive dynamics: selection for adaptive diversification!
- Dieckmann-Doebeli (1999) model (and others): selection for reproductive isolation!
- Analytically tractable model by Pennings et al. (2008): Reproductive isolation often remains intermediate, sexual selection may help, however.

Goal:
Re-investigate Dieckmann-Doebeli nearer to the quantitative genetics limit to understand the mechanism more clearly.
Lotka-Volterra ecology

Continuous ecological trait: x

Population dynamics:

$$\frac{dn_i}{dt} = \left[r(x_i) - \sum_a a(x_i, x_j) n_j \right] n_i$$

$$r(x) = K_{\text{max}} e^{-\left[\frac{x^2}{2w^2}\right]^k}$$

Stabilizing selection; $k > 1$: platykurtic

$$a(x_i, x_j) = e^{-\frac{(x_i-x_j)^2}{2\sigma^2}}$$

weakening competition
with increasing trait difference
Evolutionary branching
Genetic assumptions

Modified from Dieckmann & Doebeli (1999):

Multilocus traits:

- Ecological trait: 2×32 loci
- Mating trait: 2×16 loci

Two alleles per locus (0, or 1), additive, random recombination.

Assortative mating according to the ecological trait:

- Hermaphrodite individuals choose a mate in their female role.
- The larger the mating trait of the mother, the smaller the trait difference she accept between herself and her mate.

Individual-based simulation in continuous time:

- Constant birth rate
- Death rate determined by Lotka-Volterra competition
Genetic assumptions

Modified from Dieckmann & Doebeli (1999):
Multilocus traits:

- Ecological trait: 2×32 loci
- Mating trait: 2×16 loci

Two alleles per locus (0, or 1), additive, random recombination.
Assortative mating according to the ecological trait:

- Hermaphrodite individuals choose a mate in their female role.
- The larger the mating trait of the mother, the smaller the trait difference she accepts between herself and her mate.

Individual-based simulation in continuous time:

- Constant birth rate
- Death rate determined by Lotka-Volterra competition
Genetic assumptions

Modified from Dieckmann & Doebeli (1999):
Multilocus traits:
 - Ecological trait: 2 x 32 loci
 - Mating trait: 2 x 16 loci
Two alleles per locus (0, or 1), additive, random recombination.
Assortative mating according to the ecological trait:
 - Hermaphrodite individuals choose a mate in their female role.
 - The larger the mating trait of the mother, the smaller the trait difference she accept between herself and her mate.
Individual-based simulation in continuous time:
 - Constant birth rate
 - Death rate determined by Lotka-Volterra competition
Reference simulation: Ecological trait

Three phases

- First: fast to the middle, widened trait distribution
- Second: slow, gradual transition to bimodality
- Third: fast completion of segregation
Three-phase transition to reproductive isolation

Reference simulation: Mating trait

Three phases

- First: fast increase of assortativity
- Second: minimal additional change
- Third: fast further increase of assortativity
Three-phase transition to reproductive isolation

Reference simulation

Reference simulation: Additive variance

Three phases
- First: no significant change of variance
- Second: accelerating loss of genetic variance
- Third: seems to be initiated by the loss of genetic variance
Offspring **phenotypic** deviation becomes small only when the parental **genetic** difference becomes so!!!!
Three-phase transition to reproductive isolation

Reference simulation: Sources of selection

Ecological selection diminishes and sexual selection takes over for the third phase.
Dependence on population size, mutation rate and cost of assortativity

Three-phase transition to reproductive isolation

Parameter dependence
Three-phase transition to reproductive isolation

Parameter dependence

Dependence on competition width and kurtosis

\[\sigma_A = 0.250 \]

\[\sigma_c = 1.0 \]

\[\sigma_c = 0.75 \]

\[\sigma_c = 0.5 \]

\[\sigma_c = 0.25 \]
Three-phase transition to reproductive isolation

Parameter dependence

Same with smaller additive variance

\[
\sigma_A = 0.158
\]

<table>
<thead>
<tr>
<th>(\sigma_c = 1.0)</th>
<th>(k = 1.0)</th>
<th>(k = 1.2)</th>
<th>(k = 1.4)</th>
<th>(k = 1.6)</th>
<th>(k = 1.8)</th>
<th>(k = 2.0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
<td>[Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\sigma_c = 0.75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\sigma_c = 0.5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\sigma_c = 0.25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Image]</td>
</tr>
</tbody>
</table>
Three-phase transition to reproductive isolation

Parameter dependence

The Gaussian case
Suggested interpretation

- Large segregation variance keep homogenizing the population even if assortativity is perfect.
- Stabilizing selection (ecological, or sexual) decreases additive/segregation variance, but this process is slow.
- Run-away sexual selection completes isolation, but it is initiated only when the genetic variance is sufficiently small.
Suggested interpretation

- Large segregation variance keep homogenizing the population even if assortativity is perfect.
- Stabilizing selection (ecological, or sexual) decreases additive/segregation variance, but this process is slow.
- Run-away sexual selection completes isolation, but it is initiated only when the genetic variance is sufficiently small.
Suggested interpretation

- Large segregation variance keep homogenizing the population even if assortativity is perfect.
- Stabilizing selection (ecological, or sexual) decreases additive/segregation variance, but this process is slow.
- Run-away sexual selection completes isolation, but it is initiated only when the genetic variance is sufficiently small.
Theory background 1: Quantitative genetics (Bulmer) limit

The limit:
- Number of loci $\rightarrow \infty$
- Per locus gene effect $\rightarrow 0$
- Additive/segregation variance = const.

In this limit:
- Speed of directional evolution = const.
- Speed of change of allele frequencies $\rightarrow 0$
- Speed of change of variance $\rightarrow 0$!!!!

Evolution of variance is slow in our case, because the number of loci are high!

Theory background 2: Instability of sexual continuum

With constant mating and segregation kernel (Noest, 1997)

Stabilizing mechanisms:

- Ecological stabilization: above the scale of competition width!
- Stabilization by difference between parent and offspring (by difference between parents + segregation + mutation): below the scale of this difference!

Destabilizing mechanism:

- Sexual destabilization: above the scale of mating width!

Run-away sexual selection is arrested until segregation variance becomes sufficiently low!
Three-phase transition to reproductive isolation

- Interpretation

- Conclusion

- Three phases:
 1. fast initial diversification,
 2. prolonged partial isolation,
 3. fast final segregation.

- Interpretation:
 1. Need for selective elimination of additive/segregation variance.
 2. Decrease of additive variance is slow for high number of loci.
 3. Run-away sexual selection concludes the process.

- Parameter dependence:
 Clear adaptive speciation is sufficiently generic!

- Partial segregation tends to be transitory, but it can be sustained for long time!
Three-phase transition to reproductive isolation

Interpretation

Conclusion

- **Three phases:**
 1. fast initial diversification,
 2. prolonged partial isolation,
 3. fast final segregation.

- **Interpretation:**
 1. Need for selective elimination of additive/segregation variance.
 2. Decrease of additive variance is slow for high number of loci.
 3. Run-away sexual selection concludes the process.

- **Parameter dependence:**
 Clear adaptive speciation is sufficiently generic!

- Partial segregation tends to be transitory, but it can be sustained for long time!
Three-phase transition to reproductive isolation

Interpretation

Three phases:
1. fast initial diversification,
2. prolonged partial isolation,
3. fast final segregation.

Interpretation:
1. Need for selective elimination of additive/segregation variance.
2. Decrease of additive variance is slow for high number of loci.
3. Run-away sexual selection concludes the process.

Parameter dependence:
Clear adaptive speciation is sufficiently generic!

Partial segregation tends to be transitory, but it can be sustained for long time!
Three-phase transition to reproductive isolation

Interpretation

Three phases:

1. fast initial diversification,
2. prolonged partial isolation,
3. fast final segregation.

Interpretation:

1. Need for selective elimination of additive/segregation variance.
2. Decrease of additive variance is slow for high number of loci.
3. Run-away sexual selection concludes the process.

Parameter dependence:

Clear adaptive speciation is sufficiently generic!

Partial segregation tends to be transitory, but it can be sustained for long time!
Thanks to:

- Freddy Christiansen (Aarhus University)
- Michael Doebeli (University of British Columbia)
- Varvara Fazalova (IIASA)
- Joachim Hermisson (University of Vienna)
- Éva Kisdi (University of Helsinki)
- Hans Metz (University of Leiden)
- Liz Pásztor (Eötvös University)
- Pleuni Plennings (Harvard University)
- Janne-Tuomas Seppänen (University of Jyväskylä)
Thanks for your attention!