On the role of theory in ecology

Géza Meszéna

Eötvös University

Vácrátót, 2019

Why don't we trust theory in ecology?

Why we don't trust theory in ecology?

- Theories oversimplify everything.
- You never know, whether the assumptions are justified.
- You could have many different models and they will give you many different results.
- You could have different models explaining the same outcome.
- You never will be sure, if parameter choices are correct.
- You can argue both ways citing models.
- Etc.

Something seems to be wrong here.

And what about empirical ecology?

Look for patterns and test hypotheses before doing theory!

- Coexistence of similars, or the different?
- Intermediate disturbance hypothesis?
- Productivity-diversity relationship?
- Stress dominance hypothesis?
- Etc.

Often: Yes and No or It depends

Something seems to be wrong here, too.

What is wrong with theory?

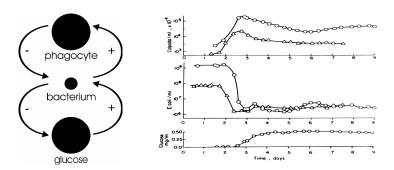
- Theoretical ecology is a zoo of independent models.
- Models are just considered different. Their relationships is not even asked.
- You cannot assess, if the conclusions are general, or highly dependent on the specific assumptions.
- Even when theory is well-developed in a subfield of ecology, it lacks connections outside the subfield.

Goal:

Consistent theory as a basis of ecology, as a discipline.

A coherence of the different levels of discussion.

Example 1: prey-predator in equilibrium



E. Coli eats sugar. Colpoda eats E. Coli.

Who will benefit from increased sugar concentration?

Who will benefit from more sugar?

The E. coli remains unaffected! Why?

Because it is determined by the equilibrium condition of the *Colpoda*!

Could you guess this without understanding theory?

Example 2: Competitve exclusion

```
Version 1: # species ≤ # resources

Generally not true, zillions of counter-examples.

Version 2: # species ≤ # regulating variables (Levins, 1970)

True, but not directly predictive.

What counts, as regulating variable?
```

Your choice:

- Read the zillions of papers, learn that Ver1 is unreliable and remain clueless about what is true.
- Rely on Ver2, and understand that the problem has a general structure. Use this understanding in studying your system.

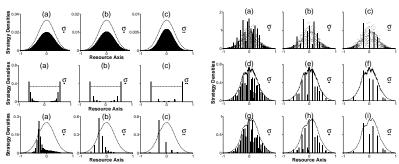
Example 2: Competitve exclusion

```
Version 1: # species ≤ # resources

Generally not true, zillions of counter-examples.

Version 2: # species ≤ # regulating variables (Levins, 1970)

True, but not directly predictive.

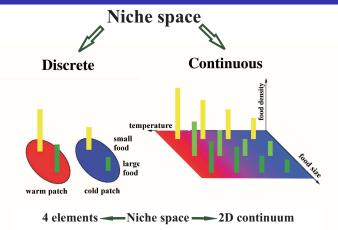

What counts, as regulating variable?
```

Your choice:

- Read the zillions of papers, learn that Ver1 is unreliable and remain clueless about what is true.
- Rely on Ver2, and understand that the problem has a general structure. Use this understanding in studying your system.

Is there a limit for similarity?

Lotka-Volterra competition *a la* MacArthur & Levins (1967) Gaussian carrying capacity & competition kernel.


Except the immediate vicinity of continuous coexistence:

Discretization! Segregation by niche width!

Gyllenberg & Meszéna (2005); Szabó & Meszéna (2006)

Ecology of spatial structure: Ways of niche segregation

Discrete and continuous.

Parallelism between resource and habitat segregation!

Temporal niche segregation, instead of Chesson's uffintuitive

Example 3: Why speciate?

- Darwin:
 - Speciation is driven by the advantage of being different.
 - No clue on reproductive isolation.
- Allopatric (Mayr) speciation:
 - No way for divergent evolution in a panmictic population.
 - Populations must be geographically separated first!
- Ecological (competitive, adaptive, etc.) speciation:
 - Reproductive isolation is a consequence of divergent selection.
 - Parsimony: ecological possibility for diversification drives diversification.

Mallet: Mayrs view of Darwin: was Darwin wrong about speciation? (2008)

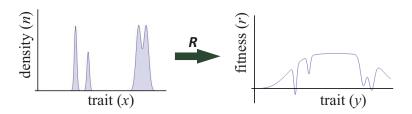
Nosil: Ecological Speciation. (2012)

Why are there so many kinds of animals?

Background: different pictures in ecology and evolution:

Niche 1
Species 1
Niche 4
Species 3
Niche 4
Species 3
Niche 2
Species 2

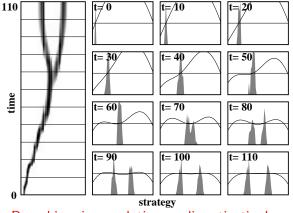
Species occupy different niches.


Adaptive landscape

Species occupy different peaks of landscape.

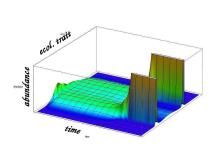
Conceptual clarification is needed!

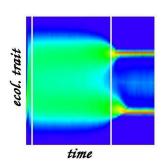
Regulated landscape


Competition: I eat your food and therefore reduce your fitness.

Competition and evolution to avoid competition are meaningless on a landscape which do not take into account the biotic feedback.

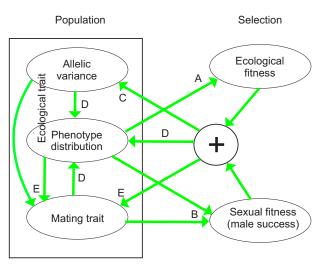
Meszéna (2005); Meszéna, Gyllenberg, Jacobs & Metz et al. (2005)


Evolutionary branching for clonal organism


MacArthur & Levins ecology + mutation; clonal inheritance

Branching, i.e. evolutionary discretization!

Three phase speciation process



Three phases

- First: fast to the middle, widened trait distribution
- Second: slow, gradual transition to bimodality
- Third: fast completion of segregation

Feedback structure

To discuss: What determines species diversity

Hypothesis: Emergence of species diversity requires:

Primary production and Niche segregation possibilities and

Evolutionary time

- High primary production without niche segregation possibilities will not lead to diversification even on long run.
- Niche segregation structures are specific to the type of the ecosystem and is not always empirically understood.
- You will never test this hypothesis by statistical means.
- Instead you may want to understand the inner workings of the diverse ecosystems.

To discuss: What determines species diversity

Hypothesis: Emergence of species diversity requires:

Primary production

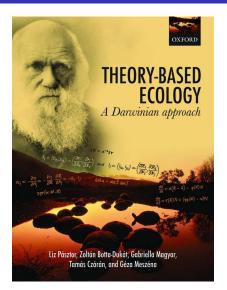
and

Niche segregation possibilities

and

Evolutionary time

- High primary production without niche segregation possibilities will not lead to diversification even on long run.
- Niche segregation structures are specific to the type of the ecosystem and is not always empirically understood.
- You will never test this hypothesis by statistical means.
- Instead you may want to understand the inner workings of the diverse ecosystems.


Conclusion

- It is often impossible to understand even the simplest ecological situations without theory.
- Theory should go beyond the zoo of independent models.
- Sufficiently deep theory provides clarity on competitive exclusion, etc. It is a reliable framework studying diversity issues.
- Consistent ecological theory has clean connection to evolutionary theory.
- Speciation is a natural phenomenon in an evolutionary theory based on ecology.

Take home

- No theory will spare you from studying the real thing.
- This is the real challange.
- Please go beyond statistical testing of hypotheses!

Theory-Based Ecology: A Darwinian approach

Is there such thing, as theory-based ecology?

At least, we have a book on it...

Enjoy!!!

Thanks

Theory Based Ecology

- Liz Pásztor
- Zoltán Botta-Dukát
- Tamás Czárán
- Gabriella Magyar

Adaptive Dynamics

- Hans Metz
- Mats Gyllenberg
- Éva Kisdi

(Former) students

- István Czibula
- András Szilágyi
- Gyuri Barabás
- Benjamin Márkus

- Stefan Geritz
- Ulf Dieckmann

Thanks for your attention!