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The challenge:

“Explaining the distribution of species: now and into the future”
Environmental factors!

= Why isn’t a species observed in all the areas we think it could live?
* Other environmental factors
* Dispersal limits
* [nteractions with other species

—

Coexistence Theory!



‘Modern’ coexistence theory

Emphasises:

*Long term growth
rate when rare (1)

l.e. ‘invasion analysis’
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Terry et al (2022) Synthesising the multiple
impacts of climatic variability on community
responses to climate change Ecography
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choice is E; = —my and C; = b,F. The per capita growth rates
then read
B G) = hiF —m; = E+ G @n
e

&
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d
We now determine the “equilibrium™ values E} and (7. We
can choose E to be the mean of I = —my; r,mce the m are
not fluctuating, £ = —m), By definition, r;(E],Cf) =0,
therefore £} = —m, fixes C7 = m;. The F* is defined to sat-
isfy ,{J"J’) = (Eqg. 8); th“- equation reads .b_,!‘*’ my for
this model, 1rom which F* = my/b,. That is, F* is equal to
species ;s R* value on that resource.

An alternative way of choosing the parameters is
E; = b, and C, = F with E‘T =b;, (i’? = F9 —mj-[bj, See
Appendix 54 for the model analysis using this parameteriza-
tion. (Note that in Appendix 84, f; is no longer constant, but
a function of time, which means that in addition to the results
here, an extra term for the storage effect also appears. Setting
the b, to be constant recovers the result in this section.)

Step 2 Determine the standardized environmental and inter-
action parameters £; and C;.—We first need to calculate the
Taylor coefficients of Eq. 3 for Eq. 27
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We now evaluate Eqs. 4, 5

. 1 .
& = m(E— E) + 507 (5 - E)’

=1x{—m+tm)+0=0 (29)
v ey, ] .
G =BG -G +587(G -G
=1 x (bF — m;) +0 = bF — m;. (30)

The C; may also be written in the form of Eq. 9. From
Eq. 10, we get ¢, =h and |, = 0. We therefore have
C; = biF —my = §;F — FY).

Step 3: Caleulate the time-averaged growth rates— The time-
averaged growth rates read

=&+ C = bF —m— ¢,(F — FY). 31
The covariance term y;,cov(&;, C;) is absent because £, is zero
(Eq. 28), and therefore so is v, = Ci(oyf,).

Step 4: Calewlate the invasion growth rates ri.— This will still
be given by Eq. 31, but it is understood that I is evaluated
at the level determined by whichever species is resident. This
level cannot be computed without an extra equation deter-
mining the dynamics of F but as we will see, this is not
needed here.

Step 5: Form weighted sum of invader and resident growth

rates— The scaling factors d, are solutions to the system of
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linear equations Egq. 21. For this model, there is a single
equation with two unknowns, reading di, + d.p, = 0. The
choice d; = 1/dy; and d, = — 1/, satisties the equation (and is
exactly what Eq. 22 recommends). Eq. 17 then reads, for
two species, as

1 B B F:
4 (difi + de¥s) = ¢u( (32)
where r; — 0. Using Eq. 31, we get
. T Y g (F—FT) b (F - FY)
oy —g) ~o (" 5 )
= (F— F). (33)

After substituting in ¢; = by and F*¥ = mJh;, the final form
of the invasion growth rates reads

Fo— by "y _m
by b

recovering the result that only the species with the lower m/h;
(R*-value) will be able to invade and persist.

As mentioned before, a useful aspect of the scaling factor
approach is that it applies in the presence of multiple limit-
ing factors. For instance, generalizing Eq. 25 to three species
competing for two resources, we have

(34)

G=1,23). (35)

2
= Zbﬂﬂ —
k=1

Applying Eq. 21, the ; are solutions to the linear system of
equations

budy + bnds + baidy =0 (36)
brady + byads + bypds — 0 G7)
whose general solution is
bnbsy — baihs
di = | bribsz — bubs |e (38)
biaba — bibn

where ¢ is an arbitrary constant. Partitioning the invader
growth rates using Eq. 17, we get

0,by Eq.21

which is independent of the resources Fi, demonstrating
vel again that fluctuations in resource levels have no
impact on coexistence. Those species that end up with a
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Two classes of problems:

‘Internal’

=»The MCT framework
IS hard to apply

(empirical uncertainty
precludes clear answers)

‘Existential’
=»The MCT framework

Is Inapplicable
(its assumptions are too great
a leap)
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Biology is very no
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Van Dyke, Levine & Kraft, Nature 611, 507-511 (2022).



1. Data quantity

 MCT is very data hungry

* Distribution of experimental effort
(number of species vs replication)
largely guesswork

Number of Species 1

6 species, all pairs:
6 population growth rates (1)

+ directional competition all
pairs: 36 a's

X 2 treatments

= 84 paramefters...
(+ error termsl!)

x ~20 data points per
parameter=

~1700 observations!

P

iy B

Number of Species 2




Shortcuts?

Various methods of interpolation from generalities:

* Use traits / phylogeny to find generalities?
* Sparse modelling to reduce parameter load

Still need a decently known core to build from...



2. We only have phenomenological models

Key estimates needed:
* Monoculture carrying capacity

* How much competitive pressure is exerted at that carrying
capacity



Predictions depend on competition model choice

a) Species A monoculture equilibrium fit b) Species B invasion growth rate
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Not just competition...

...error modelling matters too

See review Terry and Armitage (In press, MEE) for a
simulated and a real example



Model selection
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* AIC (for best prediction) or BIC
(for best model)?

e Distribution of data influential.



3. Dealing with parameter uncertainty

* Propagating uncertainty increasingly common

* Given model, confidence in parameters
* ...butas we’ve seen ‘given model’ is a big stretch!



Differential uncertainty

Competition coefficients ("a’s” ) almost always less precisely
known than potential fecundities (“A’s”)

=» Less data (+ more assumptions)

=» Will change more by noise...
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Differential uncertainty can generate spurious
results

What is driving changes to coexistence?

=>» Direct effects on raw fecundity, or the competition between species?

Can also be framed as fithess differences vs niche differences (gets a bit
more complicated)



Differential uncertainty can generate spurious results

Fit model with no

treatment effect, fit to . Compare between
: Fit models separately
real (i.e. messy +

treatment differences to
o to each treatment. =——)- )
limited) demographic and

competitive ratio

dii Ay

Real data
(from two Generla(;(? fake fjata of
treatments red reat dimensions .. ..
and blue) a]l a]l
VS
For lots of back and forth about this, forthcoming soon: ;li Ai

Terry (in press) Uncertain competition coefficients undermine inferences about

coexistence Nature A A
Van Dyke et al (in press) Reply to: Uncertain competition coefficients undermine ] ]
inferences about coexistence Nature



4. Correlations in Uncertainty

Observed
fecundity

Number competitors

Positive covariance between intrinsic growth
rates and incoming competition effects

aj; A ajj
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Fitness difference: k;/k;
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Two classes of problems:

‘Internal’

=»The MCT framework
IS hard to apply

(empirical uncertainty
precludes clear answers)

‘Existential’
=»The MCT framework

Is Inapplicable
(its assumptions are too great
a leap)



‘Existential’ problems

Should we be relying on the (standard) framework in the first place?

1. Breakdown beyond pairwise case

2. Assumption of infinite time and space horizons
(demographic stochasticity)

3. Alignment of spatial scales
4. Challenge of positive density dependence (Allee effects)
5. No adaptation (plasticity / evolution)



Validation tests:

Need to step beyond comparing predictions based on
single generation experiments

Possible tests:

* Plausibility of predicted equilibria densities

* Comparing to observed distributions (e.g. Armitage & Jones 2020)
* Analysing historical time series (e.g. Adler et al. 2006)

* Direct tests using mesocosms with fast life history



MCT in changing environments:

Temperature

Time

Fitness Ratio

10.0 7

1.0

0.1+

High Temp
Specialist
WINS

existence

Cool Temp
Specialist
WINS

0.0 04 08

Niche Difference

Breaks many
assumptions
(especially

time scales!)



Actual validation tests:

D. pallidifrons ‘PAL’ (highland ‘cold’ distribution)
D. pandora ‘PAN’ (lowland ‘hot’ distribution)



D. pallidifrons =~ »

Initiation = « *

Crea. ~ BioRender.com bio
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60 replicates per treatment = 240 total
populations tracked

Fairly strong
demographic

Each generation sexed and counted | .
stochasticity

* 37’826 PAL total

20’786 PAN total

e 1,255 usable transitions for PAL
* 613 usable transitions for PAN

0 ‘ , No dispersal
. Much more data than ‘normal dynamics

No possibility of
recolonisation

¥

34
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Can coexistence theory make accurate
predictions of time-to-extinction?

Step 1- Fitting a model...

Three key parts: N1 ~Ny X B(T) X C(Ni,t, N; ¢, T)

* Fecundity Thermal Performance Curve B(T)

« Temperature dependent competition Kernel C(Ni¢, N; ¢, T)

* Errorterm (also possibly context-dependent)

36



Thermal Performance Curve

Taylor Sexton

2
B(T) _B 5 _(T - Tmin)4 + 2 X (T - Tmin)2 X (Tpk - Tmin)
= Byk

/Simplified Briere 1

(Tpk - Tmin)4

Atkin
B(T) = By x (a — b x T)T/10

37
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Competition
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Lotka-Volterra (linear)
C(Nie Nje) = 1+ aiilie + aijNje = = 100
Beverton-Holt umber
1

C(Ni,t' Nj,t) -

Beverton-Holt logged

Beverton-Holt Joint logged

1
1+ a;N;¢ + O‘iij,t C(Ni,t' th) =

1+ alog(Nl-’t + BN + 1)
1 Partial Inverse
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Scaled BH o (14 a;N;, + aiij,t)e
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0 + a;log(N;; + 1) + a;;log(N; , + 1 :
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Thermal performance
—
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\ BH-style Competition

Competitive impact of PAL
was temperature dependent



a) D. pallidifrons
i) Fundamental Thermal i) Intraspecific Competition iii) Interspecific Competition
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M<-bf(PAN_TOT~Prev_PAN_TOT*..

Error Model

* Poisson nl = TRUE,
family = zero_inflated negbinomial(link="identity"))

e (Gaussian brm(M, data = LaggedTotals_PAN,
prior = PRIORS,
chains=4,cores =4, iter=4000)

* Negative Binomial

» Zero-inflated Negative Binomial
A(T) = A0(Ty) X (1 — inv.logit(Zi))
* (Linear) Competition- dependent Zero inflated Negative Binomial
* (Linear) Temperature-dependent Zero inflated Negative Binomial (PAL)
A(T;) = A0(T;) X (1 — inv.logit(z, + ZTT))

* (Linear) Zero inflated Competition-dependent-shape Negative Binomial (PAN)

41



Fitness Ratio {D. pandora/D. pallidifrons)
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Same competition model, Poisson Error

1004

Percentage of posterior
with each outcome
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p<0.005) while others all p>0.7)
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|s this any good?

1.

w

Breakdown beyond pairwise case
Assumption of infinite time and
space horizons

(No demographic stochasticity)
Alignment of spatial scales
Challenge of positive density
dependence (Allee effects)

Trait change

Is this a fair test?

* Better than | had assumed? * Doesn’t include spatial dynamics

* Very low precision

* More data, in a more homogenous
environment than realistic

* Tiny fraction of community



Outlook

-4 WIKIPEDIA

T : The Free Encyelopedia

postmodemism Post-Modern Coexistence Theory ?

It questions the "grand narratives” of modernism, rejects the
certainty of knowledge and stable meaning,

The idea of objective claims is dismissed as naive realism,™! emphasizing the
conditional nature of knowledge.

It opposes the "universal validity" of binary
oppositions, stable identity, hierarchy, and categorization.

Critics argue that postmodernism promotes obscurantism, abandons Enlightenment rationalism and
scientific rigor, and contributes little to analytical or empirical knowledge.['?]

Thanks to collaborators pastand
present, but especially:

Owen Lewis, Jinlin Chen (Oxford) &
Dave Armitage (OIST)

Department of UNIVERSITY OF

BIOLOGY @ OXFORD

LEVERHULME
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Any further thoughts gratefully welcomed: christopher.terry@biology.ox.ac.uk



Outlook

For a talk full of problems, I’m still fairly positive on the
approach!

Predictions certainly in right ballpark, which might be all
that is needed.

Extensions need to consider applicability

Development of ‘robust’ theory lacking —what can we
say with confidence, what is probably too subtle to
determine?

Expect competition terms to appear to change between
treatments — treat very sceptically any flat table of
competition coefficients.

Hard boundary of invasion analysis interacts poorly with
very fuzzy reality — expected persistence time, or a more
probabilistic approach may be more useful.

@@ 11@

Thanks to collaborators pastand
present, but especially:

Owen Lewis, Jinlin Chen (Oxford) &
Dave Armitage (OIST)

3 ‘ .L .“‘ ” ) , ', ;'\\w o,-‘o
Department of UNIVERSITY OF
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Any further thoughts gratefully welcomed: christopher.terry@biology.ox.ac.uk
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