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The challenge:

“Explaining the distribution of species: now and into the future”

Environmental factors!

➔Why isn’t a species observed in all the areas we think it could live?
• Other environmental factors
• Dispersal limits
• Interactions with other species

Coexistence Theory!



‘Modern’ coexistence theory 

Emphasises:
•Long term growth 

rate when rare ҧ𝑟
i.e. ‘invasion analysis’

•Partitioning into 
distinct processes

Terry et al (2022) Synthesising the multiple 

impacts of climatic variability on community 

responses to climate change Ecography





Theory often suggests 
responses are qualitatively 
indeterminate

Terry et al (2022) Synthesising the multiple impacts of climatic 

variability on community responses to climate change Ecography





Two classes of problems:

‘Internal’ 
➔The MCT framework 

is hard to apply
(empirical uncertainty 

precludes clear answers)

‘Existential’ 
➔The MCT framework 

is inapplicable
(its assumptions are too great 

a leap)



Empirical Coexistence 
Theory Recipe

Terry and Armitage (In press, MEE)
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Terry and Armitage (In press, MEE)



Biology is very noisy!



(vertical red line = predictive posterior) Terry et al. (2021) Natural enemies have inconsistent impacts on 
the coexistence of competing species Journal of Animal Ecology



Van Dyke, Levine & Kraft, Nature 611, 507–511 (2022). 



1. Data quantity

• MCT is very data hungry

• Distribution of experimental effort 
(number of species vs replication) 
largely guesswork 

6 species, all pairs:

6 population growth rates  (𝜆)

+ directional competition all 
pairs: 36 𝛼′𝑠

× 2 treatments

= 84 parameters… 

( +  error terms!)

× ~20 data points per 
parameter=

~1700 observations!



Shortcuts?

Various methods of interpolation from generalities:

• Use traits / phylogeny to find generalities?
• Sparse modelling to reduce parameter load

Still need a decently known core to build from…



2. We only have phenomenological models

Key estimates needed:  
• Monoculture carrying capacity 
• How much competitive pressure is exerted at that carrying 

capacity 



Predictions depend on competition model choice

From Terry and Armitage 
(MEE in press) 

For real examples: 
Armitage biorxiv (2023)

Cervantes-Loreto et al. 
Ecological Monographs 
(2023)



Not just competition…   

…error modelling matters too

See review  Terry and Armitage (In press, MEE) for a 
simulated and a real example



Model selection

• AIC (for best prediction) or BIC 
(for best model)? 

• Distribution of data influential. 



3. Dealing with parameter uncertainty

• Propagating uncertainty increasingly common 
• Given model, confidence in parameters

• … but as we’ve seen ‘given model’ is a big stretch!



Differential uncertainty

Competition coefficients ("α’s” ) almost always less precisely 
known than potential fecundities (“𝜆’s”)

➔ Less data (+ more assumptions)

➔Will change more by noise… 



Example: 

Terry et al. (2021) Natural enemies have inconsistent impacts on the 
coexistence of competing species JAE

𝜶𝒊𝒋𝜶𝒊𝒊

𝜶𝒋𝒊𝜶𝒋𝒋

𝝀𝒋
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Differential uncertainty can generate spurious 
results 

𝛼𝑖𝑖

𝛼𝑗𝑖
−

𝛼𝑖𝑖

𝛼𝑗𝑖
  vs  𝜆𝑖

𝜆𝑗
−

𝜆𝑖

𝜆𝑗

What is driving changes to coexistence?

➔Direct effects on raw fecundity, or the competition between species?

Can also be framed as fitness differences vs niche differences (gets a bit 
more complicated)



Fit model with no 
treatment effect, fit to 

real (i.e. messy + 
limited)

Generate fake data of 
real dimensions

Fit models separately 
to each treatment.  

Compare between 
treatment differences  to 
demographic and 
competitive ratio

Real data 
(from two 

treatments red 
and blue)

𝛼𝑖𝑖

𝛼𝑗𝑖
−

𝛼𝑖𝑖

𝛼𝑗𝑖

vs
𝜆𝑖

𝜆𝑗
−

𝜆𝑖

𝜆𝑗

For lots of back and forth about this, forthcoming soon:
Terry (in press) Uncertain competition coefficients undermine inferences about 
coexistence Nature
Van Dyke et al (in press) Reply to: Uncertain competition coefficients undermine 
inferences about coexistence Nature  

Differential uncertainty can generate spurious results 



Number  competitors 

Observed 
fecundity

0

𝜆𝑖

Positive covariance between intrinsic growth 
rates and incoming competition effects
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4. Correlations in Uncertainty 
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2022
2022
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Terry and Armitage Widespread analytical pitfalls in empirical coexistence studies 

and a checklist for improving their statistical robustness (In press at MEE)

‘Internal’ problems 
summary:

• Data limitations imply inevitable 
large and influential uncertainties

• Model choice can impact results

• Recipes unreliable, but guidelines 
possible
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Two classes of problems:

‘Internal’ 
➔The MCT framework 

is hard to apply
(empirical uncertainty 

precludes clear answers)

‘Existential’ 
➔The MCT framework 

is inapplicable
(its assumptions are too great 

a leap)



‘Existential’ problems

Should we be relying on the (standard) framework in the first place?

1. Breakdown beyond pairwise case
2. Assumption of infinite time and space horizons 

(demographic stochasticity)

3. Alignment of spatial scales
4. Challenge of positive density dependence (Allee effects)
5. No adaptation (plasticity / evolution) 



Validation tests:

Need to step beyond comparing predictions based on 
single generation experiments

Possible tests:

• Plausibility of predicted equilibria densities
• Comparing to observed distributions (e.g. Armitage & Jones 2020) 

• Analysing historical time series (e.g. Adler et al. 2006)

• Direct tests using mesocosms with fast life history



MCT in changing environments:

Breaks many 
assumptions 
(especially 
time scales!)
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Actual validation tests:

PAL

PAN
   

   

D. pallidifrons ‘PAL’ (highland ‘cold’ distribution) 
D. pandora  ‘PAN’ (lowland ‘hot’ distribution )
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60 replicates per treatment = 240 total  
populations tracked

Each generation sexed and counted
• 37’826 PAL total
• 20’786 PAN total
• 1,255 usable transitions for PAL
• 613 usable transitions for PAN

Much more data than ‘normal’

• Fairly strong 
demographic 
stochasticity

• No possibility of 
recolonisation

• No dispersal 
dynamics
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PAL PAN
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Can coexistence theory make accurate 
predictions of time-to-extinction?

36

Step 1- Fitting a model…

Three key parts:            𝑁𝑡+1 ~ 𝑁𝑡 ×  𝐵 𝑇  ×  𝐶 𝑁𝑖,𝑡 , 𝑁𝑗,𝑡 , 𝑇

• Fecundity Thermal Performance Curve    𝐵 𝑇

• Temperature dependent competition Kernel           𝐶 𝑁𝑖,𝑡 , 𝑁𝑗,𝑡 , 𝑇

• Error term   (also possibly context-dependent)   



Thermal Performance Curve
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Taylor Sexton

𝐵 𝑇 = 𝐵𝑝𝑘 ×
− 𝑇 − 𝑇𝑚𝑖𝑛

4 + 2 × 𝑇 − 𝑇𝑚𝑖𝑛
2 × 𝑇𝑝𝑘 − 𝑇𝑚𝑖𝑛

2

𝑇𝑝𝑘 − 𝑇𝑚𝑖𝑛
4

Atkin 

𝐵 𝑇 = 𝐵0 × 𝑎 − 𝑏 × 𝑇 𝑇/10

Simplified Briere 1

𝐵 𝑇 = 𝑎 × 𝑇 − 𝑇𝑚𝑖𝑛 × 𝑇𝑚𝑎𝑥 − 𝑇

Simplified 𝛃 type

𝐵 𝑇 = ρ × 𝑎 −
𝑇

10
×

𝑇

10

𝑏



Competition
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 Lotka-Volterra (linear)

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 = 1 + 𝛼𝑖𝑖𝑁𝑖,𝑡 + 𝛼𝑖𝑗𝑁𝑗,𝑡

Beverton-Holt

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 =
1

1 + α𝑖𝑖𝑁𝑖,𝑡 + α𝑖𝑗𝑁𝑗,𝑡

Beverton-Holt logged

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 =
1

1 + α𝑖𝑖𝑙𝑜𝑔 𝑁𝑖,𝑡 + 1 + α𝑖𝑗𝑙𝑜𝑔 𝑁𝑗,𝑡 + 1

Scaled BH

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 =
1

𝜃 + 𝛼𝑖𝑖𝑙𝑜𝑔 𝑁𝑖,𝑡 + 1 + 𝛼𝑖𝑗𝑙𝑜𝑔 𝑁𝑗,𝑡 + 1

Beverton-Holt Joint logged

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 =
1

1 + 𝛼𝑙𝑜𝑔 𝑁𝑖,𝑡 + 𝛽𝑁𝑗,𝑡 + 1

Partial Inverse 

C 𝑁𝑖,𝑡, 𝑁𝑗,𝑡 =
1

1 + α𝑖𝑖𝑁𝑖,𝑡 + α𝑖𝑗𝑁𝑗,𝑡
θ

Temperature-Dependent BH

𝐶 𝑁𝑖,𝑡, 𝑁𝑗,𝑡, 𝑇 =
1

1 + (𝛼0𝑖𝑖+ 𝛼𝑇𝑖𝑖  𝑇 )𝑁𝑖,𝑡 + (𝛼0𝑖𝑗+ 𝛼𝑇𝑖𝑗𝑇 )𝑁𝑗,𝑡



Thermal performance

Competitive impact of PAL 
was temperature dependent

BH-style Competition





Error Model
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• Poisson

• Gaussian

• Negative Binomial

• Zero-inflated Negative Binomial

λ 𝑇𝑡 = λ0 𝑇𝑡 × 1 − 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡 𝑍𝑖

• (Linear) Competition- dependent Zero inflated Negative Binomial 

• (Linear) Temperature-dependent Zero inflated Negative Binomial (PAL)

λ 𝑇𝑡 = λ0 𝑇𝑡 × 1 − 𝑖𝑛𝑣. 𝑙𝑜𝑔𝑖𝑡 𝑧0 + 𝑧𝑇𝑇

• (Linear) Zero inflated Competition-dependent-shape Negative Binomial (PAN)

M<-bf(PAN_TOT~Prev_PAN_TOT*…
      zi~Prev_Temp,
      nl = TRUE,
      family = zero_inflated_negbinomial(link="identity"))

brm(M, data =  LaggedTotals_PAN, 
    prior = PRIORS,
    chains=4,cores =4, iter=4000)



Generation 

Recorded Extinct



Same competition model, Poisson Error



Only significant difference between 
monoculture + steady rise compared to 
all others (Tukey HSD of those comparisons  all 
p<0.005) while others all p>0.7)

Exact variability pathway 
influential: (significance of random effect term 
for variability pathway = 0.011)

Interaction between temperature 
fluctuations and competition 
appears ‘non-additive ‘

Mean + /-  SD



Is this any good?
• Doesn’t include spatial dynamics
• More data, in a more homogenous 

environment than realistic
• Tiny fraction of community

Is this a fair test?
• Better than I had assumed?
• Very low precision

1. Breakdown beyond pairwise case 
2. Assumption of infinite time and 

space horizons 
(No demographic stochasticity)

3. Alignment of spatial scales
4. Challenge of positive density 

dependence (Allee effects)
5. Trait change

1. Breakdown beyond pairwise case 
2. Assumption of infinite time and 

space horizons 
(No demographic stochasticity)

3. Alignment of spatial scales
4. Challenge of positive density 

dependence (Allee effects)
5. Trait change



Post-Modern Coexistence Theory  ?

Outlook

Thanks to collaborators  past and 
present, but especially:

Owen Lewis, Jinlin Chen (Oxford) &  
Dave Armitage (OIST) 

Any further thoughts gratefully welcomed: christopher.terry@biology.ox.ac.uk



Outlook

• For a talk full of problems, I’m still fairly positive on the 
approach!

• Predictions certainly in right ballpark, which might be all 
that is needed. 

• Extensions need to consider applicability
• Development of ‘robust’ theory lacking – what can we 

say with confidence, what is probably too subtle to 
determine?

• Expect competition terms to appear to change between 
treatments – treat very sceptically any flat table of 
competition coefficients. 

• Hard boundary of invasion analysis interacts poorly with 
very fuzzy reality – expected persistence time, or a more 
probabilistic approach may be more useful.

Thanks to collaborators  past and 
present, but especially:

Owen Lewis, Jinlin Chen (Oxford) &  
Dave Armitage (OIST) 

Any further thoughts gratefully welcomed: christopher.terry@biology.ox.ac.uk
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