A theoretical framework for trait-based eco-evolutionary dynamics: population structure, intraspecific variation, and community assembly

Jonas Wickman

February 14, 2023

W.K. Kellogg Biological Station

Christopher A. Klausmeier

W.K. Kellogg Biological Station Michigan State University

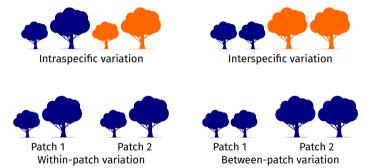
Thomas Koffel

Laboratoire de Biométrie et Biologie Evolutive Université de Lyon A rapidly growing empirical literature of intraspecific trait variation (ITV) over last decade:

Trait variation across levels of organization

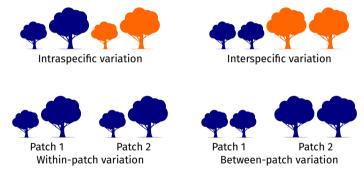
- A rapidly growing empirical literature of intraspecific trait variation (ITV) over last decade:
- How is trait variation apportioned? (Siefert et al., 2015; Westerband et al., 2021)

Intraspecific variation



Trait variation across levels of organization

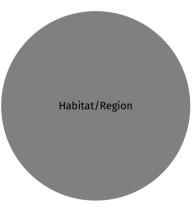
- A rapidly growing empirical literature of intraspecific trait variation (ITV) over last decade:
- How is trait variation apportioned? (Siefert et al., 2015; Westerband et al., 2021)



How does ITV affect higher-level outcomes like species coexistence and ecosystem functioning? (Bolnick et al., 2011; Violle et al., 2012; Raffard et al., 2019)

Image: wikimedia

Trait variation across levels of organization


- A rapidly growing empirical literature of intraspecific trait variation (ITV) over last decade:
- How is trait variation apportioned? (Siefert et al., 2015; Westerband et al., 2021)

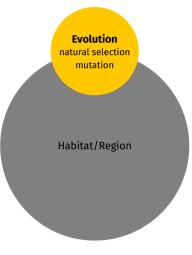
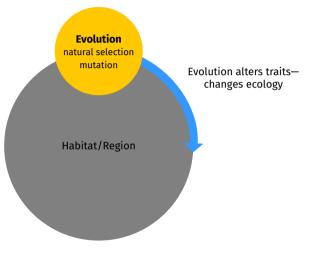
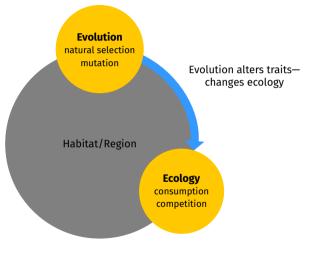
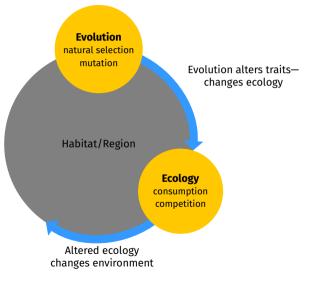
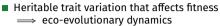

- How does ITV affect higher-level outcomes like species coexistence and ecosystem functioning? (Bolnick et al., 2011; Violle et al., 2012; Raffard et al., 2019)
- How necessary is it to include ITV to understand your study system/answer your questions?

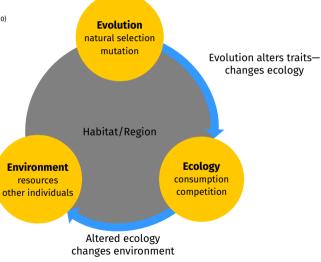
Image: wikimedia

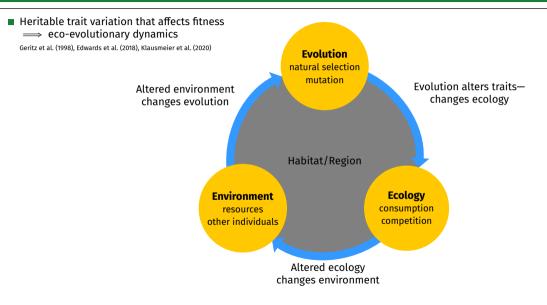

Heritable trait variation that affects fitness ⇒ eco-evolutionary dynamics

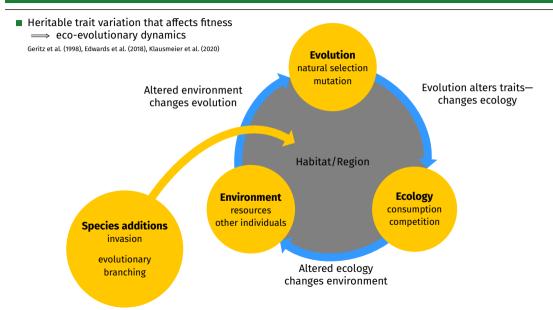

Heritable trait variation that affects fitness ⇒ eco-evolutionary dynamics

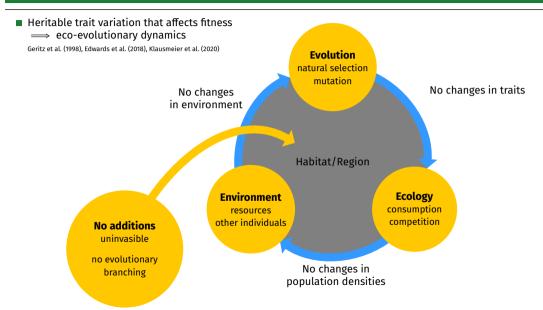

Heritable trait variation that affects fitness ⇒ eco-evolutionary dynamics

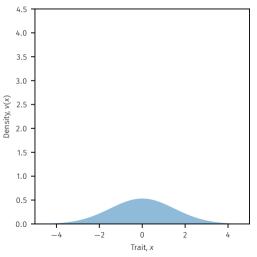



Heritable trait variation that affects fitness ⇒ eco-evolutionary dynamics

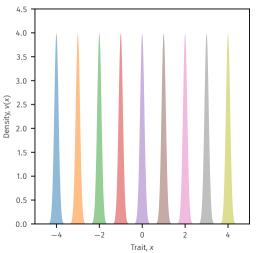



Heritable trait variation that affects fitness ⇒ eco-evolutionary dynamics

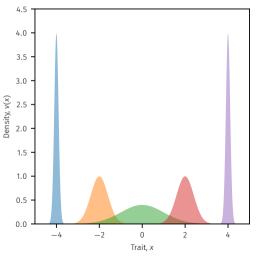


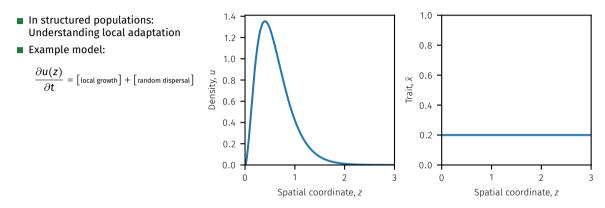

Two organizing questions:

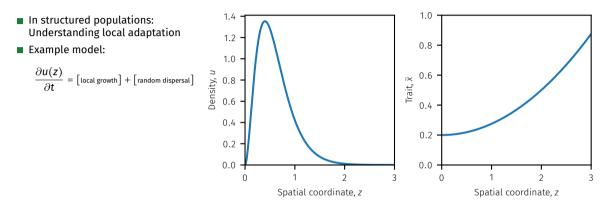
- Two organizing questions:
- 1: What happens to trait distributions when selection goes from strongly stabilizing to weakly stabilizing or disruptive?

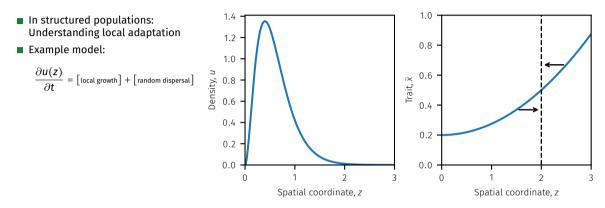

- Two organizing questions:
- 1: What happens to trait distributions when selection goes from strongly stabilizing to weakly stabilizing or disruptive?
- 2: What happens to trait distributions when spatial conditions become more heterogeneous?

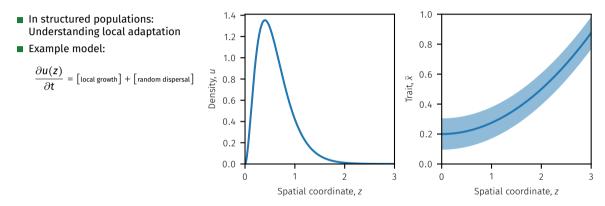
4.5 4.0 3.5 3.0 Density, v(x) 2.5 Strong stabilizing selection: 2.0 1.5 1.0 0.5 0.0 -2 _4 0 2 7 Trait, x

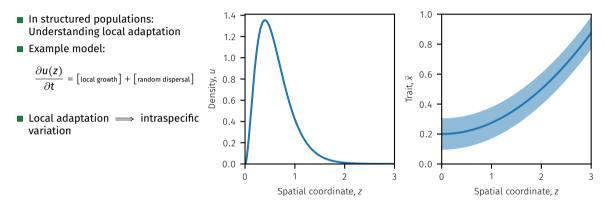

Weak stabilizing/disruptive selection:

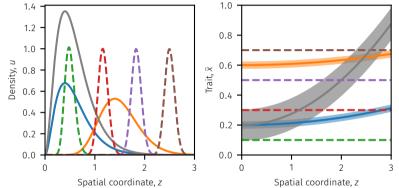

Weak stabilizing/disruptive selection:

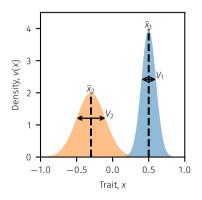



Weak stabilizing/disruptive selection:

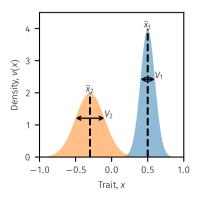


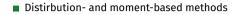

 In structured populations: Understanding local adaptation

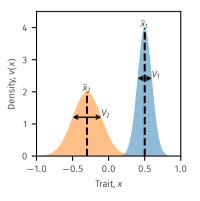



- In structured populations: Understanding local adaptation
- Example model:

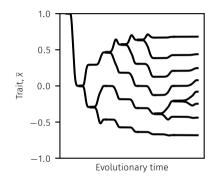
$$\frac{\partial u(z)}{\partial t} = \left[\text{local growth} \right] + \left[\text{random dispersal} \right]$$


- Local adaptation variation
- Possible outcomes:
 - One species with much local adaptation
 - Many species with no local adaptation
 - Something in between

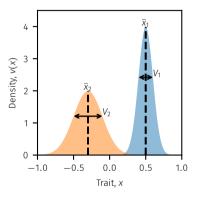

Distirbution- and moment-based methods



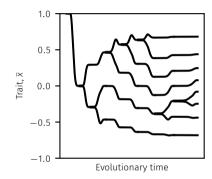
Distirbution- and moment-based methods



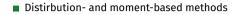
Quantitative genetics (Lande, 1976), Community ecology (Wirtz and Eckhardt, 1996; Norberg et al., 2001), Trait diffusion (Merico et al., 2014; Le Gland et al., 2020), Oligomorphic dynamics (Sasaki and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022)

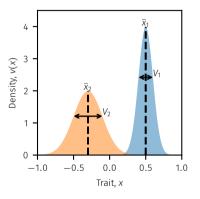


Adaptive dynamics

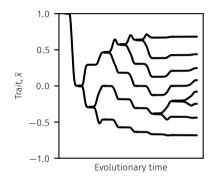


Quantitative genetics (Lande, 1976), Community ecology (Wirtz and Eckhardt, 1996; Norberg et al., 2001), Trait diffusion (Merico et al., 2014; Le Gland et al., 2020), Oligomorphic dynamics (Sasaki and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022)



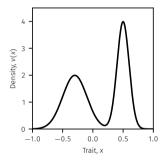


Adaptive dynamics


- Evolutionary branching (Geritz et al., 1998), assembling evolutionarily stable communities (ESCs; Edwards et al., 2018)
- Quantitative genetics (Lande, 1976), Community ecology (Wirtz and Eckhardt, 1996; Norberg et al., 2001), Trait diffusion (Merico et al., 2014; Le Gland et al., 2020), Oligomorphic dynamics (Sasaki and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022)

- Quantitative genetics (Lande, 1976), Community ecology (Wirtz and Eckhardt, 1996; Norberg et al., 2001), Trait diffusion (Merico et al., 2014; Le Gland et al., 2020), Oligomorphic dynamics (Sasaki and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022)
- No methods for community assembly

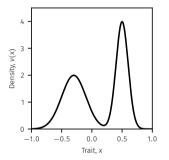
Adaptive dynamics


- Evolutionary branching (Geritz et al., 1998), assembling evolutionarily stable communities (ESCs; Edwards et al., 2018)
- No intraspecific variation

Introduce framework for combining intraspecific variation with eco-evolutionary invasion analysis and community assembly

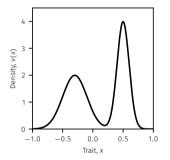
- Introduce framework for combining intraspecific variation with eco-evolutionary invasion analysis and community assembly
- Question 1: Investigate how trait variation is apportioned in ESCs within/between species as conditions become less stabilizing in a Lotka-Volterra competition model

- Introduce framework for combining intraspecific variation with eco-evolutionary invasion analysis and community assembly
- Question 1: Investigate how trait variation is apportioned in ESCs within/between species as conditions become less stabilizing in a Lotka-Volterra competition model
- Question 2: Investigate how trait variation is apportioned in ESCs within/between species and within/between patches as patches become more different in a two-patch Lotka-Volterra competition model


■ *v*(*x*)

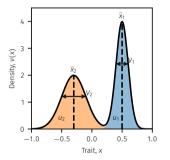
■ *v*(*x*)

Trait-space equations:


$$\frac{\mathrm{d}v(x)}{\mathrm{d}t} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)\mathrm{d}y}_{\text{birth*mutation}} - \underbrace{\frac{m(x,v)v(x)}{mortality}}_{\text{mortality}}$$

•
$$v(x) = \underbrace{v_1(x) + v_2(x) + ... + v_5(x)}_{S \text{ 'species'}}$$

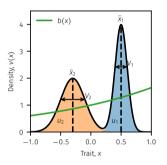
Trait-space equations:


$$\frac{\mathrm{d}v(x)}{\mathrm{d}t} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)\mathrm{d}y}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

$$v(x) = \underbrace{v_1(x) + v_2(x) + \dots + v_S(x)}_{\text{S 'species'}} \approx \underbrace{u_1 \mathcal{N}}_{\text{density}} \underbrace{v_1(x, \overline{x}_1, \overline{V_1})}_{\text{mean}} + \dots + u_S \mathcal{N}(x, \overline{x}_S, V_S) =: \tilde{v}(x)$$

$$Trait-space equations:$$

$$\frac{\mathrm{d}v(x)}{\mathrm{d}t} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)\mathrm{d}y}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

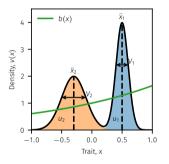


$$v(x) = \underbrace{v_1(x) + v_2(x) + \dots + v_S(x)}_{\text{S'species'}} \approx \underbrace{u_1 \mathcal{N}}_{\text{density}} \underbrace{v_{\text{ariance}}}_{\text{mean}} \underbrace{v_{\text{ariance}}}_{\text{mean}} v_{\text{ariance}} \underbrace{v_1(x) + v_2(x) + \dots + v_S(x)}_{\text{mean}} = \widetilde{v}(x)$$

Trait-space equations:

$$\frac{dv(x)}{dt} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)dy}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

$$\hat{b}(\bar{x},V,\tilde{v}) = \int_{-\infty}^{\infty} b(x,\tilde{v})\mathcal{N}(x,\bar{x},V)dx, \quad \hat{m}(\bar{x},V,\tilde{v}) = \int_{-\infty}^{\infty} m(x,\tilde{v})\mathcal{N}(x,\bar{x},V)dx$$


$$b(\mathbf{x}) = \exp(\alpha \mathbf{x}) \implies$$

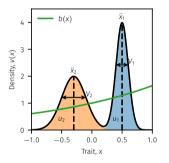
 $\hat{b}(\mathbf{\bar{x}}, \mathbf{V}) = \exp\left(\alpha \mathbf{\bar{x}} + \frac{\alpha^2}{2}\mathbf{V}\right)$

$$v(x) = \underbrace{v_1(x) + v_2(x) + \ldots + v_S(x)}_{\text{S 'species'}} \approx \underbrace{u_1 \mathcal{N}}_{\text{density}} (x, \overline{x_1}, \overline{V_1}) + \ldots + u_S \mathcal{N}(x, \overline{x}_S, V_S) =: \tilde{v}(x)$$

Trait-space equations:

$$\frac{dv(x)}{dt} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)dy}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

$$\begin{split} \hat{b}(\bar{x}, V, \tilde{v}) &= \int_{-\infty}^{\infty} b(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx , \quad \hat{m}(\bar{x}, V, \tilde{v}) = \int_{-\infty}^{\infty} m(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx \\ \frac{du_i}{dt} &= \left(\hat{b}(\bar{x}_i, V_i, \tilde{v}) - \hat{m}(\bar{x}_i, V_i, \tilde{v}) \right) u_i \end{split}$$


$$b(x) = \exp(\alpha x) \implies$$

 $\hat{b}(\bar{x}, V) = \exp\left(\alpha \bar{x} + \frac{\alpha^2}{2}V\right)$

$$v(x) = \underbrace{v_1(x) + v_2(x) + \ldots + v_S(x)}_{\text{S'species'}} \approx \underbrace{u_1 \mathcal{N}}_{\text{density}} (x, \overline{x_1}, \overline{v_1}) + \ldots + u_S \mathcal{N}(x, \overline{x}_S, V_S) =: \tilde{v}(x)$$

Trait-space equations:

$$\frac{\mathrm{d}v(x)}{\mathrm{d}t} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)\mathrm{d}y}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

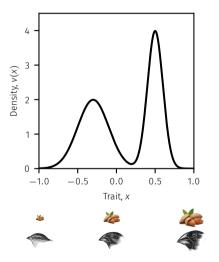
$$\begin{split} \hat{b}(\bar{x}, V, \tilde{v}) &= \int_{-\infty}^{\infty} b(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx , \quad \hat{m}(\bar{x}, V, \tilde{v}) = \int_{-\infty}^{\infty} m(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx \\ \\ \frac{du_i}{dt} &= \left(\hat{b}(\bar{x}_i, V_i, \tilde{v}) - \hat{m}(\bar{x}_i, V_i, \tilde{v}) \right) u_i \\ \\ \frac{d\bar{x}_i}{dt} &= V_i \left(\frac{\partial \hat{b}}{\partial \bar{x}}(\bar{x}_i, V_i, \tilde{v}) - \frac{\partial \hat{m}}{\partial \bar{x}}(\bar{x}_i, V_i, \tilde{v}) \right) \end{split}$$


$$b(\mathbf{x}) = \exp(\alpha \mathbf{x}) \implies$$

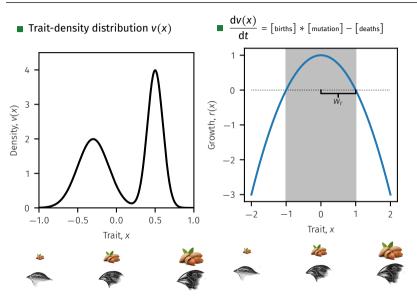
 $\hat{b}(\mathbf{\bar{x}}, \mathbf{V}) = \exp\left(\alpha \mathbf{\bar{x}} + \frac{\alpha^2}{2}\mathbf{V}\right)$

$$v(x) = \underbrace{v_1(x) + v_2(x) + \dots + v_S(x)}_{S \text{ 'species'}} \approx \underbrace{u_1 \mathcal{N}}_{\text{density}} \underbrace{v_1(x, \overline{x}_1, \overline{V_1})}_{\text{mean}} + \dots + u_S \mathcal{N}(x, \overline{x}_S, V_S) =: \tilde{v}(x)$$

Trait-space equations:

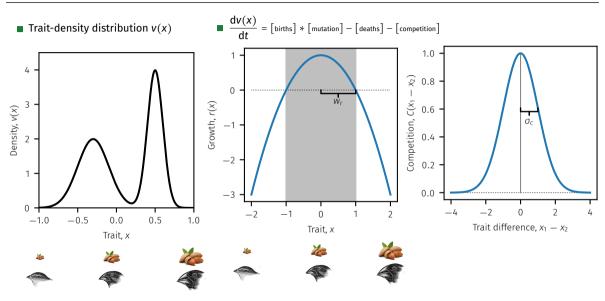

$$\frac{dv(x)}{dt} = \underbrace{\int_{-\infty}^{\infty} b(y,v)v(y)\mathcal{N}(x,y,M)dy}_{\text{birth*mutation}} - \underbrace{m(x,v)v(x)}_{\text{mortality}}$$

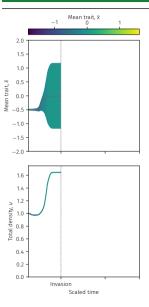
$$\begin{split} \hat{b}(\bar{x}, V, \tilde{v}) &= \int_{-\infty}^{\infty} b(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx , \quad \hat{m}(\bar{x}, V, \tilde{v}) = \int_{-\infty}^{\infty} m(x, \tilde{v}) \mathcal{N}(x, \bar{x}, V) dx \\ \frac{du_i}{dt} &= \left(\hat{b}(\bar{x}_i, V_i, \tilde{v}) - \hat{m}(\bar{x}_i, V_i, \tilde{v}) \right) u_i \\ \frac{d\bar{x}_i}{dt} &= V_i \left(\frac{\partial \hat{b}}{\partial \bar{x}}(\bar{x}_i, V_i, \tilde{v}) - \frac{\partial \hat{m}}{\partial \bar{x}}(\bar{x}_i, V_i, \tilde{v}) \right) \\ \frac{dV_i}{dt} &= V_i^2 \left(\frac{\partial^2 \hat{b}}{\partial \bar{x}^2}(\bar{x}_i, V_i, \tilde{v}) - \frac{\partial^2 \hat{m}}{\partial \bar{x}^2}(\bar{x}_i, V_i, \tilde{v}) \right) + \hat{b}(\bar{x}_i, V_i, \tilde{v}) M \end{split}$$

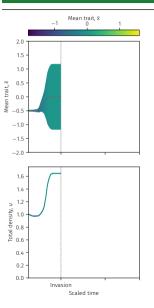


$$b(x) = \exp(\alpha x) \implies$$

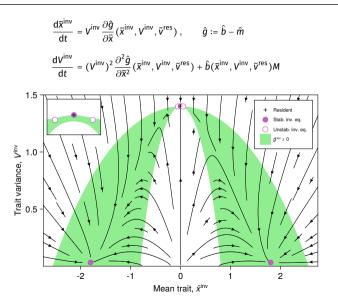
 $\hat{b}(\bar{x}, V) = \exp\left(\alpha \bar{x} + \frac{\alpha^2}{2}V\right)$

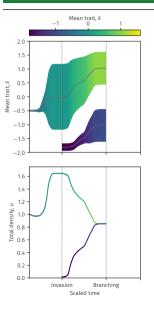

Trait-density distribution v(x)

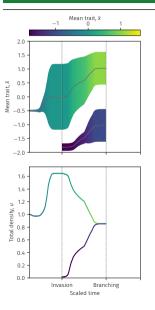


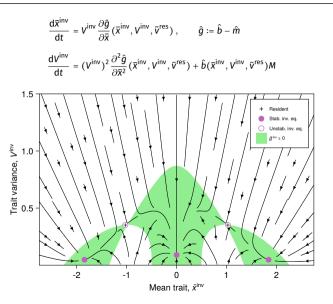

Example model-Lotka-Volterra competition

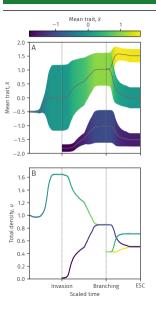
Example model-Lotka-Volterra competition

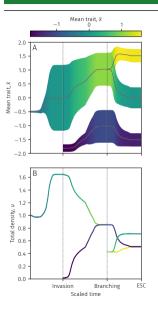


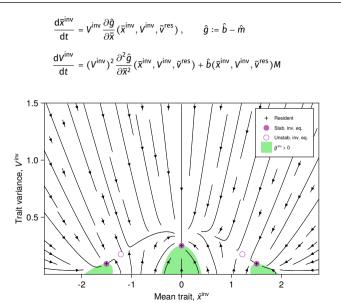


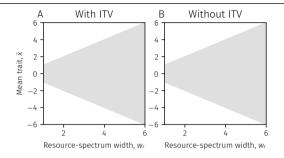

$$\begin{split} \frac{\mathrm{d}\bar{x}^{\mathrm{inv}}}{\mathrm{d}t} &= V^{\mathrm{inv}}\frac{\partial\hat{g}}{\partial\bar{x}}\left(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}}\right), \qquad \hat{g} := \hat{b} - \hat{m} \\ \frac{\mathrm{d}V^{\mathrm{inv}}}{\mathrm{d}t} &= (V^{\mathrm{inv}})^2\frac{\partial^2\hat{g}}{\partial\bar{x}^2}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}}) + \hat{b}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}})M \end{split}$$

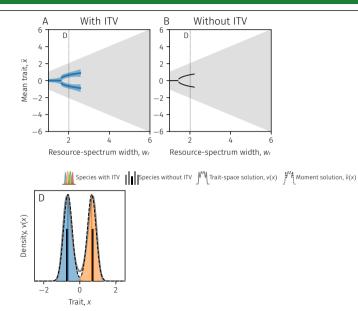


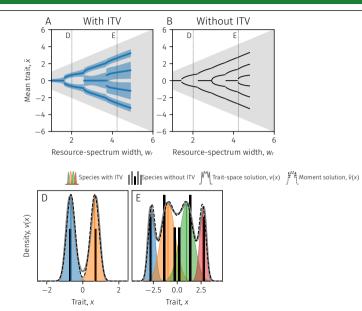


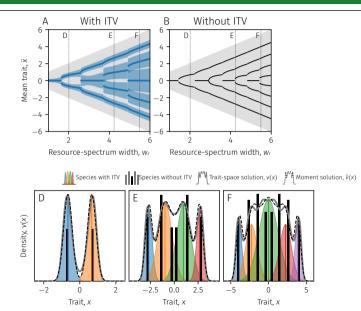

$$\begin{split} \frac{\mathrm{d}\bar{x}^{\mathrm{inv}}}{\mathrm{d}t} &= V^{\mathrm{inv}}\frac{\partial\hat{g}}{\partial\bar{x}}\left(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}}\right), \qquad \hat{g} \coloneqq \hat{b} - \hat{m} \\ \frac{\mathrm{d}V^{\mathrm{inv}}}{\mathrm{d}t} &= (V^{\mathrm{inv}})^2\frac{\partial^2\hat{g}}{\partial\bar{x}^2}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}}) + \hat{b}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}})M \end{split}$$

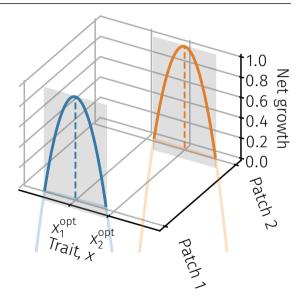


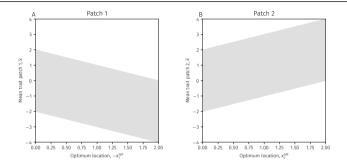


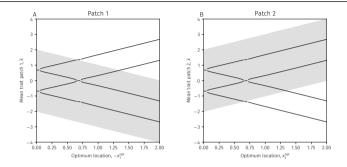


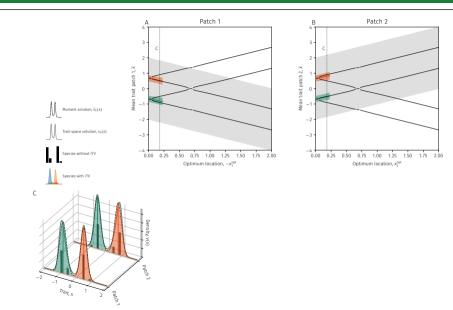

$$\begin{split} \frac{\mathrm{d}\bar{x}^{\mathrm{inv}}}{\mathrm{d}t} &= V^{\mathrm{inv}}\frac{\partial\hat{g}}{\partial\bar{x}}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}})\,,\qquad \hat{g}:=\hat{b}-\hat{m}\\ \frac{\mathrm{d}V^{\mathrm{inv}}}{\mathrm{d}t} &= (V^{\mathrm{inv}})^2\frac{\partial^2\hat{g}}{\partial\bar{x}^2}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}})+\hat{b}(\bar{x}^{\mathrm{inv}},V^{\mathrm{inv}},\tilde{v}^{\mathrm{res}})M \end{split}$$

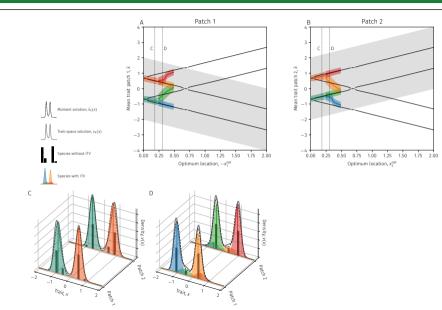


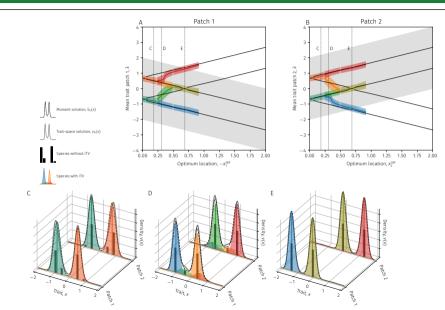


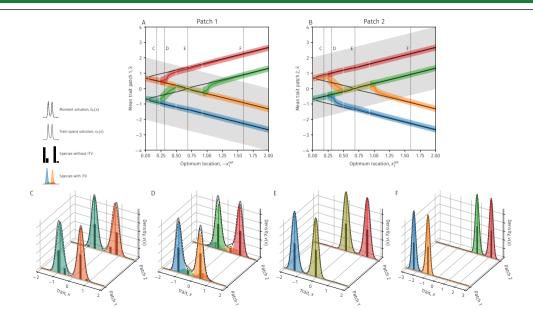







$$\frac{dv_1(x)}{dt} = [births] * [mutation] - [deaths] - [competition] - [dispersal out of 1] + [dispersal in from 2]
$$\frac{dv_2(x)}{dt} = [births] * [mutation] - [deaths] - [competition] - [dispersal out of 2] + [dispersal in from 1]$$$$





Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.
 - Contribution of each is system specific

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.
 - Contribution of each is system specific
- How does ITV relate to species coexistence and richness?

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.
 - Contribution of each is system specific
- How does ITV relate to species coexistence and richness?
 - Positive correlation between ITV and richness across different environments

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.
 - Contribution of each is system specific
- How does ITV relate to species coexistence and richness?
 - Positive correlation between ITV and richness across different environments
 - Dynamics with ITV yield less or equal richness than dynamics without ITV

- Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.
- How necessary is it to include ITV to understand your study system/answer questions?
 - Sometimes. Even our simple models show idiosyncratic patterns.
- How is trait variation apportioned in ESCs?
 - Within-species, between-species, within-patch, and between-patch variation can all be significant components.
 - Contribution of each is system specific
- How does ITV relate to species coexistence and richness?
 - Positive correlation between ITV and richness across different environments
 - Dynamics with ITV yield less or equal richness than dynamics without ITV
- Taking system specifics into account is necessary. Our framework can be used on the theory/modeling side to aid in this endeavor.

VOL. 201, NO. 4 THE AMERICAN NATURALIST APRIL 2023

A Theoretical Framework for Trait-Based Eco-Evolutionary Dynamics: Population Structure, Intraspecific Variation, and Community Assembly

Jonas Wickman,^{1,*} Thomas Koffel,¹ and Christopher A. Klausmeier^{1,2,3,4}

 W. K. Kellogg Biologial Staten, Michigan State University, Hickory Corners, Michigan 40009; and Program in Ecology and Evolutionary Biology, Michigan State University, East Lansing, Michigan 48842.
 Department of Integrative Biology, Michigan 48823;
 Department of Clobal Ecology, Carnegie Institution for Science, Stanford, California 1940;

Submitted May 17, 2022; Accepted October 18, 2022; Electronically published Month XX, 2023 Online enhancements: supplemental PDF.

Paper available soon in The American Naturalist

Acknowledgments:

- Supported by NSF DEB-1754250 "Intraspecific Trait Variation in Phytoplankton at Different Scales" (PI Elena Litchman, co-PIs: CK, Ed Theriot)
- Thanks to American Naturalist editors Erol Akçay & Mike Cortez & 1 anonymous reviewer
- Check out paper by Sébastien Lion et al. : Lion S, Boots M, Sasaki A. 2022. Multimorph eco-evolutionary dynamics in structured populations. American Naturalist 200: 345–372

References

- Bolnick, D.I., Amarasekare, P., Araújo, M.S., Bürger, R., Levine, J.M., Novak, M., Rudolf, V.H., Schreiber, S.J., Urban, M.C., Vasseur, D.A., 2011. Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution 26, 183-192. doi:10.1016/j.tree.2011.01.009.
- Débarre, F., Nuismer, S.L., Doebeli, M., 2014. Multidimensional (co)evolutionary stability. The American Naturalist 184, 158-171. doi:10.1086/677137.
- Edwards, K.F., Kremer, C.T., Miller, E.T., Osmond, M.M., Litchman, E., Klausmeier, C.A., 2018. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecology Letters 21, 1853–1868. doi:10.1111/e1e.13142.
- Geritz, S.A.H., Kisdi, E., Meszéna, G., Metz, J.A.J., 1998. Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree. Evolutionary Ecology 12, 35–57. doi:10.1023/a:1006554906681.
- Klausmeier, C.A., Kremer, C.T., Koffel, T., 2020. Trait-based ecological and eco-evolutionary theory, in: McCann, K.S., Gellner, G. (Eds.), Theoretical Ecology: concepts and applications. Oxford University Press, Oxford, pp. 161–194. doi:10.1093/oso/9780198824282.001.0001.
- Lande, R., 1976. Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314-334. doi:10.2307/2407703.
- Le Gland, G., Vallina, S.M., Smith, S.L., Cermeño, P., 2020. Spead 1.0 a model for simulating plankton evolution with adaptive dynamics in a two-trait continuous fitness landscape applied to the sargasso sea. Geoscientific Model Development Discussions 2020, 1–54. doi:10.5194/gmd-2020-302.
- Lion, S., Boots, M., Sasaki, A., 2022. Multimorph eco-evolutionary dynamics in structured populations. The American Naturalist 200, 345-372. doi:10.1086/720439.
- Merico, A., Brandt, G., Smith, S.L., Oliver, M., 2014. Sustaining diversity in trait-based models of phytoplankton communities. Frontiers in Ecology and Evolution 2, 59. doi:10.3389/fevo.2014.00059.
- Norberg, J., Swaney, D.P., Dushoff, J., Lin, J., Casagrandi, R., Levin, S.A., 2001. Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences of the USA 98, 11376–11381. doi:10.1073/pnas.171315998.
- Raffard, A., Santoul, F., Cucherousset, J., Blanchet, S., 2019. The community and ecosystem consequences of intraspecific diversity: a meta-analysis. Biological Reviews 94, 648–661. doi:doi.org/10.1111/brv.12472.
- Sasaki, A., Dieckmann, U., 2011. Oligomorphic dynamics for analyzing the quantitative genetics of adaptive speciation. Journal of Mathematical Biology 63, 601-635. doi:10.1007/s00285-010-0380-6.
- Siefert, A., Violle, C., Chalmandrier, L., Albert, C.H., Taudiere, A., Fajardo, A., Aarssen, L.W., Baraloto, C., Carlucci, M.B., Cianciaruso, M.V., de L. Dantas, V., de Bello, F., Duarte, L.D.S., Fonseca, C.R., Freschet, G.T., Gaucherand, S., Gross, N., Hikosaka, K., Jackson, B., Jung, V., Kamiyama, C., Katabuchi, M., Kembel, S.W., Kichenin, E., Kraft, N.J.B., Lagerström, A., Bagousse-Pinguet, Y.L., Li, Y., Mason, N., Messier, J., Nakashizuka, T., Overton, J.M., Peltzer, D.A., Pérez-Ramos, I.M., Pillar, V.D., Prentice, H.C., Richardson, S., Sasaki, T., Schamp, B.S., Schöb, C., Shipley, B., Sundqvist, M., Sykes, M.T., Vandewalle, M., Wardle, D.A., 2015. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters 18, 1406–1419. doi:10.1111/ela.12508.
- Violle, C., Enquist, B.J., McGill, B.J., Jiang, L., Albert, C.H., Hulshof, C., Jung, V., Messier, J., 2012. The return of the variance: intraspecific variability in community ecology. Trends in Ecology & Evolution 27, 244–252. doi:10.1016/j.tree.2011.11.014.

Westerband, A.C., Funk, J.L., Barton, K.E., 2021. Intraspecific trait variation in plants: a renewed focus on its role in ecological processes. Annals of Botany 127, 397–410. doi:10.1093/aob/mcab011.

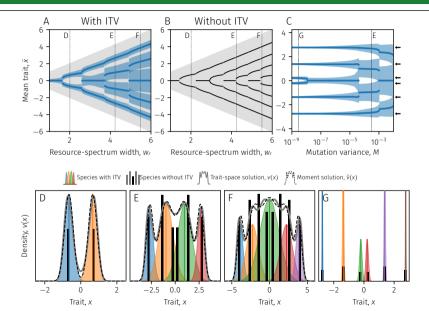
Wirtz, K.W., Eckhardt, B., 1996. Effective variables in ecosystem models with an application to phytoplankton succession. Ecological Modelling 92, 33-53. doi:10.1016/0304-3800(95)00196-4.

Unstructured Lotka-Volterra equations

$$\frac{\mathrm{d} v_d(x)}{\mathrm{d} t} \stackrel{\scriptscriptstyle +}{=} \int_{-\infty}^{\infty} f(y, \mathbf{v}) v_{\mathrm{S}}(y) \mathcal{N}(y, x, M) \mathrm{d} y, \qquad \mathbf{v} = (v_1, \cdots, v_K)$$

population-level per capita rate

$$\frac{\mathrm{d}u_{id}}{\mathrm{d}t} \stackrel{\scriptscriptstyle \pm}{=} \hat{f}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}}) u_{is}, \qquad \hat{f}(\bar{x}, V, \tilde{\mathbf{v}}) = \int_{-\infty}^{\infty} f(x, \tilde{\mathbf{v}}) \mathcal{N}(x, \bar{x}, V) \mathrm{d}x$$


relative-density weight

$$\frac{\mathrm{d}\bar{\mathbf{x}}_{id}}{\mathrm{d}t} \stackrel{+}{=} \frac{\overline{u_{is}}}{u_{id}} \left[\underbrace{V_{is} \frac{\partial \hat{f}}{\partial \bar{\mathbf{x}}}(\bar{\mathbf{x}}_{is}, V_{is}, \tilde{\mathbf{v}})}_{\text{directional selection}} + \underbrace{\hat{f}(\bar{\mathbf{x}}_{is}, V_{is}, \tilde{\mathbf{v}})(\bar{\mathbf{x}}_{is} - \bar{\mathbf{x}}_{id})}_{\text{mean-trait flow}} \right],$$

relative-density weight

$$\frac{\mathrm{d}V_{id}}{\mathrm{d}t} \stackrel{+}{=} \frac{\overline{u_{is}}}{u_{id}} \left[\underbrace{V_{is}^2 \frac{\partial^2 \hat{f}}{\partial \bar{x}^2}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}})}_{\text{stabilizing/disruptive selection}} + \underbrace{\hat{f}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}})(V_{is} - V_{id})}_{\text{between-to-within class variation}} + \underbrace{\hat{f}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}})(\bar{x}_{is} - \bar{x}_{id})^2}_{\text{between-to-within class variation}} + \underbrace{2V_{is}\frac{\partial \hat{f}}{\partial \bar{x}}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}})(\bar{x}_{is} - \bar{x}_{id})}_{\text{class-local adaptation}} + \underbrace{\hat{f}(\bar{x}_{is}, V_{is}, \tilde{\mathbf{v}})M}_{\text{mutation}} \right].$$

Effects of mutation variance

