
IITE Seminar

A theoretical framework for trait-based eco-evolutionary
dynamics: population structure, intraspecific variation, and

community assembly

Jonas Wickman

February 14, 2023

W.K. Kellogg Biological Station



Collaborators

Christopher A. Klausmeier
W.K. Kellogg Biological Station

Michigan State University

Thomas Ko�el
Laboratoire de Biométrie et Biologie Evolutive

Université de Lyon



Trait variation across levels of organization

A rapidly growing empirical literature of intraspecific trait variation (ITV) over last decade:

How is trait variation apportioned? (Siefert et al., 2015; Westerband et al., 2021)

Intraspecific variation Interspecific variation

Patch 1 Patch 2
Within-patch variation

Patch 1 Patch 2
Between-patch variation

How does ITV a�ect higher-level outcomes like species coexistence and ecosystem functioning? (Bolnick et al., 2011;
Violle et al., 2012; Ra�ard et al., 2019)
How necessary is it to include ITV to understand your study system/answer your questions?
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Eco-evolutionary dynamics and evolutionarily stable communities (ESCs)

Heritable trait variation that a�ects fitness
Ô⇒ eco-evolutionary dynamics

Geritz et al. (1998), Edwards et al. (2018), Klausmeier et al. (2020)
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How will trait variation in ESCs be distributed?

Two organizing questions:

1: What happens to trait distributions when selection goes from strongly stabilizing to weakly stabilizing or disruptive?
2: What happens to trait distributions when spatial conditions become more heterogeneous?
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Question 1—Stabilizing→disruptive selection

Stabilizing/disruptive selection can a�ect both intraspecific variation and number of species
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Question 2: Spatial heterogeneity

In structured populations:
Understanding local adaptation

Example model:

∂u(z)
∂t

= [local growth] + [random dispersal]

Local adaptation Ô⇒ intraspecific
variation
Possible outcomes:

One species with much local
adaptation
Many species with no local
adaptation
Something in between
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Theoretical frameworks

Distirbution- and moment-based methods

Quantitative genetics (Lande, 1976), Community ecology (Wirtz
and Eckhardt, 1996; Norberg et al., 2001), Trait di�usion (Merico
et al., 2014; Le Gland et al., 2020), Oligomorphic dynamics (Sasaki
and Dieckmann, 2011; Débarre et al., 2014; Lion et al., 2022)

Adaptive dynamics

Evolutionary branching (Geritz et al., 1998), assembling
evolutionarily stable communities (ESCs; Edwards et al.,
2018)

No methods for community assembly No intraspecific variation
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Outline

Introduce framework for combining intraspecific variation with eco-evolutionary invasion analysis and community
assembly

Question 1: Investigate how trait variation is apportioned in ESCs within/between species as conditions become less
stabilizing in a Lotka-Volterra competition model
Question 2: Investigate how trait variation is apportioned in ESCs within/between species and within/between patches
as patches become more di�erent in a two-patch Lotka-Volterra competition model
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Trait-space and moment equations in unstructured communities
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dx̄i
dt
= Vi
⎛

⎝

∂b̂
∂x̄
(x̄i,Vi, ṽ) −
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Trait-space equations:

dv(x)
dt

= ∫
∞

−∞

b(y, v)v(y)N(x, y,M)dy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

birth∗mutation

−m(x, v)v(x)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

mortality

Moment equations (i = 1, 2, ...,S):

b̂(x̄,V, ṽ) = ∫
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Example model—Lotka–Volterra competition

Trait-density distribution v(x)
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) , ĝ ∶= b̂ − m̂

dVinv

dt
= (Vinv

)
2 ∂

2ĝ
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Question 1: What happens as selection becomes more disruptive?
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Structured populations
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Question 2: What happens as environments become more heterogeneous?
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Conclusions

Our framework lets us explore the causes and consequences of ITV under eco-evolutionary dynamics.

How necessary is it to include ITV to understand your study system/answer questions?
Sometimes. Even our simple models show idiosyncratic patterns.

How is trait variation apportioned in ESCs?
Within-species, between-species, within-patch, and between-patch variation can all be significant components.
Contribution of each is system specific

How does ITV relate to species coexistence and richness?
Positive correlation between ITV and richness across di�erent environments
Dynamics with ITV yield less or equal richness than dynamics without ITV

Taking system specifics into account is necessary. Our framework can be used on the theory/modeling side to aid in
this endeavor.
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abstract:q1 How is trait diversity in a community apportioned be-
tween and within coevolving species? Disruptive selection may re-
sult in either a few species with large intraspecific trait variation
(ITV) or many species with different mean traits but little ITV. Sim-
ilar questions arise in spatially structured communities: heteroge-
neous environments could result in either a few species that exhibit
local adaptation or many species with different mean traits but little
local adaptation. To date, theory has been well-equipped to either in-
clude ITV or to dynamically determine the number of coexisting spe-
cies, but not both. Here, we devise a theoretical framework that com-
bines these facets and apply it to the above questions of how trait
variation is apportioned within and between species in unstructured
and structured populations, using two simple models of Lotka-Volterra
competition. For unstructured communities, we find that as the
breadth of the resource spectrum increases, ITV goes from being un-
important to crucial for characterizing the community. For spatially
structured communities on two patches, we find no local adaptation,
symmetric local adaptation, or asymmetric local adaptation, de-
pending on how much the patches differ. Our framework provides
a general approach to incorporate ITV inmodels of eco-evolutionary
community assembly.q2

Keywords: moment methods, evolutionarily stable communities,
adaptive dynamics, quantitative genetics, intraspecific trait varia-
tion (ITV).

Introduction

In recent years, the need to account for intraspecific varia-
tion of functional traits has been increasingly recognized as

important for understanding the functioning of ecological
communities (Albert et al. 2010; Violle et al. 2012). For ex-
ample, intraspecific trait variation (ITV) has been shown to
be important for detecting niche differentiation and envi-
ronmental filtering (Paine et al. 2011) and for quantifying
howpairwise species interactions affect the total biomass in
experimentally assembled communities (Kraft et al. 2014).
ITV in functional traits has also been shown to often be
substantial compared with variation between species (Sie-
fert et al. 2015).
If species have heritable variation in traits that affect

fitness, natural selection will act on that variation, chang-
ing the distribution of traits in the community over time.
In the long run, a community with a fixed number of spe-
cies will approach an attractor for the eco-evolutionary
dynamics, in the simplest case an equilibrium. However,
such an eco-evolutionary equilibrium could still be inva-
sible by other species from outside the community with
other trait distributions, and one of the resident species
might be under selective forces that result in an “evolu-
tionary branching,” where a species ends up at fitness
minimum as a result of directional selection and conse-
quently splits into two (Geritz et al. 1998). Thus, in the
longer term, the species richness of a community at an
eco-evolutionary equilibrium might not be stable. Even-
tually, a community that is in equilibrium and is stable
to further addition of speciesmay be reached. Such a com-
munity has been called an evolutionarily stable commu-
nity (ESC); since such a community can persist over long
timescales and serves as an attractor for eco-evolutionary
dynamics, ESCs can serve as important model communi-
ties (Edwards et al. 2018).
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Unstructured Lotka-Volterra equations
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Generic class-structured equations
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E�ects of mutation variance
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