Counting niches:

 Can spatial patterns reveal niche partitioning in tropical forests?RAFAEL D'ANDREA
ASSISTANT PROFESSOR, STONY BROOK UNIVERSITY

Big-picture questions

What forces assemble ecological communities? (Focus: niche partitioning/ sharing)

Is niche structure a primary component of biodiversity patterns in high-diversity communities such as tropical forests?

Niche sharing

The idea that multiple species may occupy the same niche on any given niche axis

D'Andrea et al. 2020

Regional variation

Colombia

Panama

This talk

Do tropical species segregate spatially at local scales (< $1 \mathrm{~km}^{2}$)?

If so, does the pattern reflect adaptations to local abiotic environments?

If so, is this spatial niche structure reflected in species traits?

Barro Colorado Island

$1,000 \mathrm{~m} \times 500 \mathrm{~m}$ plot 207k trees
300 species
Data: STRI

Barro Colorado Island

Q: Signs of spatial niche structure (i.e. niche partitioning/sharing)?

Barro Colorado Island

Data: STRI

John et al. 2007

- The spatial distributions of $36-51 \%$ of tree species at these sites show strong associations to soil nutrient distributions
- Result cannot be explained by neutral dispersal

Barro Colorado Island

Step 1: Look for spatial associations among species

Step 1: Look for spatial associations among species

For each two species:
More near-neighbor tree pairs than expected by chance?

```
Yes }->\mathrm{ connected
No }->\mathrm{ not connected
```


Step 1: Look for spatial associations among species

For each two species:
More near-neighbor tree pairs than expected by chance?

$$
\begin{aligned}
& \text { Yes } \rightarrow \text { connected } \\
& \text { No } \rightarrow \text { not connected }
\end{aligned}
$$

Step 2: Optimize modularity in the network

Modularity $=\sum_{\text {modules }}\left[\binom{\right.$ fraction of edges }{ within module }$\left.-\left(\begin{array}{c}\text { expected } \\ \text { fraction of edges } \\ \text { within module }\end{array}\right)\right]$

Several algorithms are available

- Walk trap (Pons and Latapy 2005)
- Spin glass (Reichardt and Bornholdt 2006)
- "Louvain" (Blondel et al. 2008)
- Etc

Step 2: Optimize modularity in the network

Step 2: Optimize modularity in the network

Step 2: Optimize modularity in the network

This talk

Do tropical species segregate spatially at local scales? \downarrow

If so, does the pattern reflect adaptations to local abiotic environments?

If so, is this spatial niche structure reflected in species traits?

Step 3: Infer local abiotic conditions

Assumptions

- Each species group has its own preferred abiotic environment ("soil type")
- Soil type varies smoothly in space

Step 3: Infer local abiotic conditions

Step 4: Compare with measured soil conditions

Step 4: Compare with measured soil conditions

Game plan

- Train a statistical classifier to predict the inferred soil type based on local nutrient levels, and check for quality of predictions
- High-accuracy predictions would indicate that trees are sorting by local soil nutrients

Step 4: Compare with measured soil conditions

Methods

- Statistical classifier:

C5.0 decision tree algorithm

- Builds decision trees by splitting data based on features
- Finds rules that maximize information gain (i.e. increase within-group similarity) per split

Decision tree example

Step 4: Compare with measured soil conditions

Methods

- Assaying quality of prediction:

Cohen's kappa

- Compares observed accuracy to expected accuracy

$$
\kappa=\frac{\binom{\text { observed }}{\text { agreement }}-\binom{\text { expected }}{\text { agreement }}}{1-\binom{\text { expected }}{\text { agreement }}}
$$

kappa	interpretation
<0.2	poor agreement
0.2 to 0.4	fair agreement
0.4 to 0.6	moderate agreement
0.6 to 0.8	good agreement
>0.8	very good agreement

Step 4: Compare with measured soil conditions

Problem

- Both the data features and the predicted variable are spatially autocorrelated
- Some better-than-chance agreement is expected

Step 4: Compare with measured soil conditions

Problem

- Both the features and the predicted variable are autocorrelated
- Some better-than-chance agreement is expected

Solution

- Train the algorithm on mock autocorrelated data and compare results

Step 4: Compare with measured soil conditions

Results

- Nutrients are highly predictive of inferred local conditions
- Association is much tighter than with null autocorrelated data

Step 4: Compare with measured soil conditions

Results

- Red group \rightarrow low-nutrient sites
- Green group \rightarrow high-nutrient sites
- Blue group \rightarrow high P and organic N

This talk

Do tropical species segregate spatially at local scales? $\sqrt{ }$

Does the pattern reflect adaptations to local abiotic environments? \checkmark

Is this spatial niche structure reflected in species traits?

Step 5: Compare with species traits

BCl trait data

- 77 species
- 32 traits
- 5 trait categories

Trait data courtesy of Joe Wright

Step 5: Compare with species traits

- Traits of the same type are highly correlated/ redundant
- Ordination via PCA
- Keep $1^{\text {st }}$ PC of each trait type

Step 5: Compare with species traits

Game plan

- Train C5.0 learner on species traits, predict species group
- No need to worry about autocorrelation
- Cohen's kappa will measure how informative species traits are in re to spatial groups

Step 5: Compare with species traits

Results

Q: Do traits predict species spatial cluster?

A: Yes, better than chance
Cohen's kappa -- traits

Step 5: Compare with species traits

Results

- Red group has higher vital rates and lower wood density than Green and Blue groups
- Green group has higher leaf density, toughness, etc, than Red and Blue groups

This talk

Do tropical species segregate spatially at local scales? $\sqrt{ }$

Does the pattern reflect adaptations to local abiotic environments? \checkmark

Is this spatial niche structure reflected in species traits? \checkmark

Step 6: Tie it all together

Q: Do the trait results match the nutrient results?

1. If local soil conditions filter among dispersing species, we would expect local species to be adapted to local soil conditions

- E.g., live-fast-die-young species may disproportionately recruit in high-nutrient soils

2. If species modulate the local environment, we would expect local soil conditions to reflect species composition

- E.g., live-fast-die-young species may deplete local soil nutrients, and will then be found in low-nutrient areas

Step 6: Tie it all together

Step 6: Tie it all together

Step 6: Tie it all together

Note

- Only a crude description of trait distribution
- Possible substructure trait clusters within groups?

Step 6: Tie it all together

- D'Andrea et al. 2020: BCI trees fall into height clusters revealing niche structure in competition for light
- When species are sorted by "soil niches", might their light-related clustered trait structure become even more apparent?

Conclusions

BCl trees are spatially sorted into groups of common neighbors

These groups are strongly associated with local soil conditions

The groups also sort by life-history traits

Results suggest local flora modulates soil conditions rather than the reverse.

Deeper trait-based analysis may reveal further niche structure

Coda: Quantifying niche differentiation

- Estimating degree of niche differentiation:
- Compare proportion of time trees of each group are found in their best "soil type" to proportion of time they are found in other "soil types".
- $\mathrm{BCl}: 2.1 \pm 0.3$
- D'Andrea et al. 2020b: consistent with emergent neutral behavior
- Compare to other spatial methods of estimating species interactions (e.g. Volkov et al. 2009)

La Planada

Data courtesy of Dr Natalia Norden

La Planada \longrightarrow

cluster

- 2

La Planada

BCI vis-à-vis La Planada

BCl

$1,000 \mathrm{~m} \times 500 \mathrm{~m}$ plot 207k (18k) trees 298 (77) species

La Planada

$500 \mathrm{~m} \times 500 \mathrm{~m}$ plot 105k (12k) trees 241 (56) species

Idea:
Compare group membership of shared species

Problem

Only one shared species in the analysis (12 total)

BCI vis-à-vis La Planada

- Estimating degree of niche differentiation:
- Compare proportion of time trees of each group are found in their best "soil type" to proportion of time they are found in other "soil types".
- BCl: 2.1 ± 0.3,

La Planada: 1.6 ± 0.1

Acknowledgments

Dianzhuo Wang James O'Dwyer

Gyuri Barabás
Géza Meszéna IITE

```
    Natalia Norden
    Jim Dalling
    Joe Wright
        STRI
    ForestGEO
Stony Brook University
```

. rafael.dandrea@stonybrook.edu@raf_dandrea
google sites rafaeldandrea

Trait type correlations

Correlations between
trait types:
vital $\stackrel{-}{\leftrightarrows}$ wood
$\quad-\quad$ vital $\stackrel{\text { seed }}{ }$
leaf $\stackrel{-}{\leftrightarrow}$ seed
leaf $\stackrel{-}{\leftrightarrow}$ wood

Robustness analysis

Robustness analysis

Cohen's $\kappa=0.88 \pm 0.03$
(compare to 0.91 ± 0.03)

Robustness analysis

Cohen's $\kappa=0.2 \pm 0.2$
(compare to 0.24 ± 0.3)

Robustness analysis

BCI: 4 clusters

Robustness analysis

BCI: 3 clusters

$\|$ II censuses (1982-2010) $\quad \mathrm{d}^{*}=10 \mathrm{~m} \quad$ Nmin $=40 \quad$ No. species $=77 \quad$ prop. trees $>10 \mathrm{~cm}$ dbh analyzed $=0.92 \quad$ modularity $=0.2 \quad$ cor[adjacent, same community] $=0 .\{$

sp1

爻

