Counting niches: Can spatial patterns reveal niche partitioning in tropical forests?

RAFAEL D'ANDREA

ASSISTANT PROFESSOR, STONY BROOK UNIVERSITY

Big-picture questions

What forces assemble ecological communities? (Focus: niche partitioning/ sharing)

Is niche structure a primary component of biodiversity patterns in high-diversity communities such as tropical forests?

Niche sharing

The idea that multiple species may occupy the same niche on any given niche axis

Marten Scheffer* and Egbert H. van Nes

Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 8080, 6700 DD, Wageningen, The Netherlands

Edited by Stephen R. Carpenter, Universit

IDEA AND

Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities

doi: 10.1111/j.1461-0248.2006.00996.x

Ryan A. Chisholm and Stephen W. Pacala¹

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544

Ecology Letters, (2007) **10**: 95–104

PERSPECTIVE A niche for neutrality

Abstract

Peter B. Adler, 1* Janneke
HilleRisLambers² and Jonathan
M. Levine³Ecologists now recognize that controversy over the relative importance of niches and
neutrality cannot be resolved by analyzing species abundance patterns. Here, we use
classical coexistence theory to reframe the debate in terms of stabilizing mechanisms

Regional variation

Panama

Colombia

This talk

Do tropical species segregate spatially at local scales (< 1km²)?

If so, does the pattern reflect adaptations to local abiotic environments?

If so, is this spatial niche structure reflected in species traits?

Barro Colorado Island

1,000 m x 500 m plot 207k trees 300 species

Data: STRI

Barro Colorado Island

Q: Signs of spatial niche structure (i.e. niche partitioning/sharing)?

John et al. 2007:

- The spatial distributions of 36–51% of tree species at these sites show strong associations to soil nutrient distributions
- Result cannot be explained by neutral dispersal

Barro Colorado Island

Q: Yes but can we draw an anatomy of spatial niche structure?

Data: STRI

Step 1: Look for spatial associations among species

For each two species:

More near-neighbor tree pairs than expected by chance?

Yes → connected No → not connected

Step 1: Look for spatial associations among species

For each two species:

More near-neighbor tree pairs than expected by chance?

Yes → connected No → not connected

Step 1: Look for spatial associations among species

Adjacency matrix

For each two species:

More near-neighbor tree pairs than expected by chance?

Yes → connected No → not connected

Modularity =
$$\sum_{\text{modules}} \left[\left(\begin{array}{c} \text{fraction of edges} \\ \text{within module} \end{array} \right) - \left(\begin{array}{c} \text{expected} \\ \text{fraction of edges} \\ \text{within module} \end{array} \right) \right]$$

Several algorithms are available

- Walk trap (Pons and Latapy 2005)
- Spin glass (Reichardt and Bornholdt 2006)
- "Louvain" (Blondel et al. 2008)
- Etc

This talk

Do tropical species segregate spatially at local scales? ✓

If so, does the pattern reflect adaptations to local abiotic environments?

If so, is this spatial niche structure reflected in species traits?

Step 3: Infer local abiotic conditions

Assumptions:

- Each species group has its own preferred abiotic environment ("soil type")
- Soil type varies smoothly in space

Step 3: Infer local abiotic conditions

Game plan

- Train a statistical classifier to predict ٠ the inferred soil type based on local nutrient levels, and check for quality of predictions
- High-accuracy predictions would • indicate that trees are sorting by local soil nutrients

Methods

- Statistical classifier: C5.0 decision tree algorithm
 - Builds decision trees by splitting data based on features
 - Finds rules that maximize information gain (i.e. increase within-group similarity) per split

Decision tree example

Methods

- Assaying quality of prediction: Cohen's kappa
 - Compares observed accuracy to expected accuracy

 $\kappa = \frac{\begin{pmatrix} \text{observed} \\ \text{agreement} \end{pmatrix} - \begin{pmatrix} \text{expected} \\ \text{agreement} \end{pmatrix}}{1 - \begin{pmatrix} \text{expected} \\ \text{agreement} \end{pmatrix}}$

kappa	interpretation
< 0.2	poor agreement
0.2 to 0.4	fair agreement
0.4 to 0.6	moderate agreement
0.6 to 0.8	good agreement
> 0.8	very good agreement

Problem

- Both the data features and the predicted variable are spatially autocorrelated
- Some better-than-chance agreement is expected

Problem

- Both the features and the predicted variable are autocorrelated
- Some better-than-chance agreement is expected

Data

250

500

Solution

• Train the algorithm on mock autocorrelated data and compare results

Results

- Nutrients are highly predictive of inferred local conditions
- Association is much tighter than with null autocorrelated data

Results

- Red group \rightarrow low-nutrient sites
- Green group → high-nutrient sites
- Blue group \rightarrow high P and organic N

This talk

Do tropical species segregate spatially at local scales? ✓

Does the pattern reflect adaptations to local abiotic environments? ✓

Is this spatial niche structure reflected in species traits?

First principal component

- Traits of the same type are highly correlated/ redundant
- Ordination via PCA
- Keep 1st PC of each trait type

Standardized trait value

Trait data courtesy of Joe Wright

Game plan

- Train C5.0 learner on species traits, predict species group
- No need to worry about autocorrelation
- Cohen's kappa will measure how informative species traits are in re to spatial groups

A: Yes, better than chance

Results

- Red group has higher vital rates and lower wood density than Green and Blue groups
- Green group has higher leaf density, toughness, etc, than Red and Blue groups

Unshared letters (abc) denote significant differences ($\alpha = 0.05$, pairwise Wilcox test) 3 3

This talk

Do tropical species segregate spatially at local scales? ✓

Does the pattern reflect adaptations to local abiotic environments? ✓

Is this spatial niche structure reflected in species traits? 🗸

Step 6: Tie it all together

Q: Do the trait results match the nutrient results?

- 1. If local soil conditions filter among dispersing species, we would expect local species to be adapted to local soil conditions
 - E.g., live-fast-die-young species may disproportionately recruit in high-nutrient soils
- 2. If species modulate the local environment, we would expect local soil conditions to reflect species composition
 - E.g., live-fast-die-young species may deplete local soil nutrients, and will then be found in low-nutrient areas

Hy	pothesis	Prediction
1. s	soil → species	vital rates $\stackrel{+}{\leftrightarrow}$ nutrients
2. s	species → soil	vital rates ↔ nutrients

Step 6: Tie it all together

Step 6: Tie it all together

Step 6: Tie it all together

Note

- Only a crude description of trait distribution
- Possible substructure trait clusters within groups?

Unshared letters (abc) denote significant differences ($\alpha = 0.05$, pairwise Wilcox test) 38

Step 6: Tie it all together

- D'Andrea et al. 2020: BCI trees fall into height clusters revealing niche structure in competition for light
- When species are sorted by "soil niches", might their light-related clustered trait structure become even more apparent?

Conclusions

BCI trees are spatially sorted into groups of common neighbors

These groups are strongly associated with local soil conditions

The groups also sort by life-history traits

Results suggest local flora modulates soil conditions rather than the reverse.

Deeper trait-based analysis may reveal further niche structure

Coda: Quantifying niche differentiation

- Estimating degree of niche differentiation:
 - Compare proportion of time trees of each group are found in their best "soil type" to proportion of time they are found in other "soil types".
- BCI: 2.1 ± 0.3
- D'Andrea et al. 2020b: consistent with emergent neutral behavior
- Compare to other spatial methods of estimating species interactions (e.g. Volkov et al. 2009)

What about other forests?

La Planada

gx

La Planada

500 -

400 -

300 -

200 -

100 -

0

100

200

х

300

400

≻

BCI vis-à-vis La Planada BCI La Planada 1,000 m x 500 m plot 500 m x 500 m plot 207k (18k) trees 105k (12k) trees 298 (77) species 241 (56) species La Planada cluster • 1 2 • 2 Compare group membership of shared species • 3

4 6 500

Only one shared species in the analysis (12 total)

BCI

Idea:

Problem:

BCI vis-à-vis La Planada

- Estimating degree of niche differentiation:
 - Compare proportion of time trees of each group are found in their best "soil type" to proportion of time they are found in other "soil types".
- BCI: 2.1 ± 0.3, La Planada: 1.6 ± 0.1

Acknowledgments

Dianzhuo Wang James O'Dwyer

Gyuri Barabás Géza Meszéna IITE Natalia Norden Jim Dalling Joe Wright STRI ForestGEO

Stony Brook University

Rafael D'Andrea

rafael.dandrea@stonybrook.edu

🛞 google sites rafaeldandrea

What are your questions?

Trait type correlations

leaf

seed

wood

size

vital

BCI: 4 clusters

Cohen's κ = 0.88 ± 0.03 (compare to 0.91 ± 0.03)

BCI: 4 clusters

Cohen's $\kappa = 0.2 \pm 0.2$ (compare to 0.24 \pm 0.3)

BCI: 3 clusters

