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Population fluctuations in nature (historical view)

1. Environmental drivers

2. Population dynamics: density dependence, species interactions
– Stable equilibrium

– Regular cycles

Irregular fluctuations/cycles must result from environment, be unpredictable
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Origins of chaos in ecology

initial Pop. Size = 10

initial Pop. Size = 10.01

𝑁𝑡 = 𝑁𝑡−1 + 𝑁𝑡−1𝑟 1 −
𝑁𝑡−1
𝐾

Discrete logistic population model (logistic map)

• Sensitivity to initial conditions

• Bounded, irregular, deterministic oscillations

• No stable equilibria/fixed points

• Short-term predictability, but not long-term 
(unlike randomness)

Could chaos explain 
irregular fluctuations 
in nature?



What do we know about chaos?
• Numerous theoretical and empirical studies have since been done

• Beyond the 1-d logistic map:
– Chaos is more likely in more complex (higher-dimensional) systems 

(multiple species, age classes, life histories, populations in space, etc.)

– Chaos doesn’t necessarily depend on (or require high) growth rate

– Chaos doesn’t necessarily result in low pop. sizes (higher extinction risk)

Munch et al. (2019)

Multi-species Ricker
random predator-prey 
networks
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• Chaotic and non-chaotic time series can 
be impossible to distinguish visually

• Chaos is harder to detect in short, noisy 
time series



Lyapunov exponent (LE)

• Exponential divergence rate, averaged across entire trajectory (𝑇 → ∞)

• LE > 0 indicative of chaos 

• Magnitude indicative of forecast horizon (~ 1/LE timesteps)

• There are several different methods for estimating the LE

Stable Unstable

l1<0 l1>0

l1= log dominant eigenvalue of Jacobian matrix



Are ecological dynamics chaotic?

• Most recent global meta-
analysis found that only 1 
out of 634 ecological time 
series was chaotic (Sibly et 
al. 2007)

• Similar conclusions have 
been drawn by other recent 
papers (Upadhyay et al. 
1998, Snell & Serra 1998, 
Freckleton & Watkinson 
2002, Shelton & Mangel 
2011, Salvidio 2011)

• Consensus that chaos in 
ecology is ‘rare’



Publications about chaos in ecology

Munch et al. (2022) AREES



But why should chaos in ecology be rare?

• Nonlinear dynamics are everywhere

• Ecosystems are highly complex and high-dimensional

• Abiotic drivers of ecosystems are themselves chaotic (e.g. the weather)

probably 
accurate

definitely 
not 
accurate
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Experimental and field demonstrations of chaos

• 3-species microbial communities in chemostat (Becks et al. 2005)

• Flour beetles in lab (Dennis et al. 1997)

• Planktonic community in a mesocosm (Beninca et al. 2008)

• Perennial grasses grown in field (Tilman & Wedin 1991)

• Fennoscandian voles across Europe (Turchin & Ellner 2000)

• Measles dynamics in Africa (Ferrari et al. 2008)

• Rocky intertidal community with intransigent competition 
(Beninca et al. 2015)
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cycles

chaos

Becks & Arndt 2013

Is it just that chaos is impossible to 
detect in field data if it’s there, or… 



Is it just the methods we’re using?
• Most meta-analyses fit 1-d parametric models and infer chaos based 

parameter estimates

• 1-d models treat all higher-dimensional dynamics as noise

• Can low-d chaos (e.g. logistic map) explain population fluctuations? No.

Munch et al. (2019)

Data are actually generated from a chaotic 
2-d predator-prey system

Deterministic chaos in 2-d looks like stable 
dynamics with noise in 1-d.

Beverton-Holt
model

𝑥𝑡+1 = 𝑓(𝑥𝑡)



Is it just the methods we’re using?
• Last meta-analysis to use flexible, higher-dimensional methods was 

published >25 years ago (Ellner & Turchin 1995)

We now have more 
data and new and 
improved methods

Evidence for chaos in 
• 7 of 31 field time series (23%)
• 3 of 20 experimental time series (15%)

“… we want to stress that our procedure was biased against finding chaos.”

“Our findings of positive Lyapunov exponents in several data sets, despite 

the biases in our approach, therefore are a strong indication that ecological 

systems are capable of chaotic behavior.”



Our meta-analysis

1. How well do various chaos detection methods work under 
ecologically realistic conditions (short, noisy data)?

– Nonparametric, higher-d methods

– Operate on single time series, substitute lags for unobserved 
dimensions

2. What happens if we apply the best methods to empirical 
data from a large number of species around the world?

Rogers et al. (2022) Nature Ecology & Evolution



Chaos detection algorithms

(Rosenstein et al. 1993)

(Nychka et al. 1992)

(Webber & Zbilut 1994)

(Bandt & Pompe 2002)

(Luque et al. 2009)

(Toker et al. 2020)

Method

1. Direct estimation of LE

2. Jacobian estimation of LE

3. Recurrence quantification analysis

4. Permutation entropy

5. Horizontal visibility algorithm

6. Chaos decision tree



Chaos detection 
algorithms
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Simulation testing

Training/Test dataset Validation dataset #1

Validation dataset #2

Dynamics Model
Observation 

Noise
Time Series 

Length

Stochastic

WhiteNoise
RedNoise
RandomWalkTrend
RandomWalk
Cyclostationary
BlueNoise
AR1

1%
10%
20%
30%

25
50
75

100
250

Periodic

SineWave
Ricker
PredatorPrey
Logistic8cyc
Logistic
HostParPar
Henon

Chaotic

Ricker
PredatorPrey
Poincare
Logistic
Ikeda
HostParPar
CubicMap

Dynamics Model
Observation 

Noise
Time Series 

Length

Stochastic
VioletNoise
SinForcedAR1
PinkNoise
AR2 1%

10%
20%
30%

25
50
75

100
250

Periodic
Tinkerbell
MouseMap
Competition

Chaotic
Tinkerbell
MouseMap
Competition

Dynamics Model
Observation 

Noise
Process 
Noise

Time Series 
Length

Periodic
SeasonalPredPrey
NPZ
LPA

1%
10%
20%
30%

0%
10%
20%
30%

100
Chaotic

SeasonalPredPrey
NPZ
LPA

• 100 reps for each combination

• 37 different stochastic, periodic, and 
chaotic models total



Simulation results

• 3 methods were effective classifiers

• Performance similar on test and validation datasets

• Observation and process noise increase false negative rate, but not false positive rate

• Jacobian LE had best performance at short time series lengths

Method False negative rate False positive rate

1. Direct estimation of LE 0.08 0.66

2. Jacobian estimation of LE 0.29 0.04

3. Recurrence quantification analysis 0.37 0.13

4. Permutation entropy 0.26 0.18

5. Horizontal visibility algorithm 0.62 0.10

6. Chaos decision tree 0.73 0.02

(Pooled across all test and validation datasets)



Empirical data

• 172 time series from the Global Population Dynamics Database (GPDD) 

– Field-collected data

– 138 different taxa

– 30 to 197 timesteps

– High-quality subset of the GPDD: 
• length ≥30, zeros <60%, missing values <22%, reliability score ≥2



Chaos prevalence in the GPDD

• At least 1/3 of time series were chaotic

• Chaos prevalence varied by taxonomic 
group

Chaos detection method
GPDD % chaotic 

(number of series)

1. Jacobian LE 33% (58)

2. Recurrence quantification analysis 42% (74)

3. Permutation entropy 51% (89)
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Number of series:

Why do these results differ 
from other meta-analyses?



Restricted dimensionality reduces ability to detect chaos

• Constraining model used by 
Jacobian LE to E = 1 (1-d 
nonparametric model) 
reduces apparent chaos 
prevalence to < 10% 

• Constraining to 1-d parametric 
models reduces to < 6% 



Chaos more prevalent in shorter-lived species

Possibly because long-lived species:

• may be better insulated from chaotic environmental drivers

• have lower average mortality rates, hence potentially weaker 
interactions with other species (per unit time, but not generation)

• have fewer generations sampled (detection depends on time series 
length relative to intrinsic time scale)



Positive LEs scale with body size

• Combined results with 
independently estimated 
LEs from laboratory and 
field studies (Anderson & 
Gilooly 2020)

• Consistent relationship with 
scaling of about -1/6

• Additional values from lake 
zooplankton are consistent 
with this relationship

slope = -0.16

microbes zooplankton vertebrates



But is it really chaos? Couldn’t it just be…

• Noise?

– Noise increases false negative rate, not false positive

– Chaotic series are more variable, but not necessarily less predictable

– Consistent mass scaling with low-noise laboratory studies

• Nonstationarity (e.g. exponential growth)?

– Median growth rates (around 0) do not differ between chaotic and 
not chaotic series

– Most chaotic series do not have a monotonic trend

– Only few cases of exp. growth misclassified as chaos



But is it really chaos? Couldn’t it just be…
• Chaotic advection of marine plankton?

– 47% of additional lake zooplankton time series were chaotic

– Time series show persistent seasonal peaks/troughs that are not likely 
due to advection

– Consistent mass scaling unlikely to be due to advection
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Part 2: Intermittent instability



Global vs. local stability
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Global vs. local stability
Beninca et al. 2015
New Zealand rocky shore

LE ≈ 0

Ushio et al. 2018
Japanese fish 
community



Research Approach

• Assembled monthly plankton time series data from 17 lakes and 
4 marine sites (154 species-level time series)

• Used Jacobian method to compute LE and local stability

• We then assessed:
– prevalence of chaos and seasonal fluctuations in local stability

– relationship between local stability and predictability 

– across-site variation in LEs and seasonality of local stability

– how results are affected by level of data aggregation 
• species

• functional group

• trophic level (total phytoplankton, total zooplankton)

Rogers et al. (2023) Ecology Letters



Local stability sometimes oscillates

Abundance Local stability
Local stability

(Power spectrum)

Chaotic (LE = + 0.18)
Local instability
Seasonality

Non-chaotic (LE = − 0.0024)
Local instability
Seasonality

Non-chaotic (LE = − 0.57)
Always locally stable
No seasonality

Paracalanus 
parvus
Port Erin Bay

Leptodora 
kindtii
Lake Müggelsee

Cyclops 
prealpinus
Lake Geneva
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Summary of stability patterns

• Seasonal oscillations in local stability common in chaotic series, also seen in and non-
chaotic (but locally unstable) series

Stability
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Summary of stability patterns

• Seasonal oscillations in local stability common in chaotic series, also seen in and non-
chaotic (but locally unstable) series

Level of 
taxonomic 
aggregation

% chaotic

Species 52%

Functional 
group

42%

Trophic level 7%

• Chaos detected 
less frequently 
with taxonomic 
aggregation
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Aggregates less variable and more predictable

• Increased predictability not expected if species just fluctuating independently

• Suggests species fluctuate out of phase due to dynamics (e.g. complementarity) 

• Aggregation smooths over dynamics



Local instability related to step-ahead prediction error

• Suggests periods of higher/lower 
forecastability throughout the year

VER = variance expansion ratio:
a less conservative measure of local stability, 𝑡𝑟(𝐽 𝑥𝑡 𝐽 𝑥𝑡

𝑇)

log VER



Local instability related to step-ahead prediction error

VER = variance expansion ratio:
a less conservative measure of local stability, 𝑡𝑟(𝐽 𝑥𝑡 𝐽 𝑥𝑡

𝑇)



Across-site variation in stability

• Sites with lower mean temperature 
(higher latitude) had:

– higher relative seasonality in local eigenvalues

– higher LEs

• Only at coarser taxonomic resolution



Conclusions / Take Aways
• Ecosystems are not 1-d

– 1-d population models can mischaracterize dynamics, treating complexity as noise

– May (1976): 1-d models “do great violence to reality”

• Chaos is not ‘rare’ 
– Birds and mammals (least chaotic taxa) were 59% of time series analyzed, but are <1% of species on earth; 

chaos may be considerably more common than ⅓

• Local stability can vary over time

• Implications for management (esp. short-lived species)
– Short-term forecasting may be feasible, but precise long-term prediction impossible

– Prediction may be more feasible for taxonomic aggregates

– Prediction accuracy, sensitivity to change, management efficacy may be greater at certain times of year

– Re-think use of linear statistical models, 1-d population models, steady-state management policies – is this 
the best we can do?

– Perhaps avoid defining objectives in terms of equilibrium conditions, consider index-based management

• Opportunity to use increasing data and modern algorithms to better characterize and 
understand complex, non-equilibrium, and high-dimensional ecological dynamics
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