Chaos and intermittent instability in ecological systems

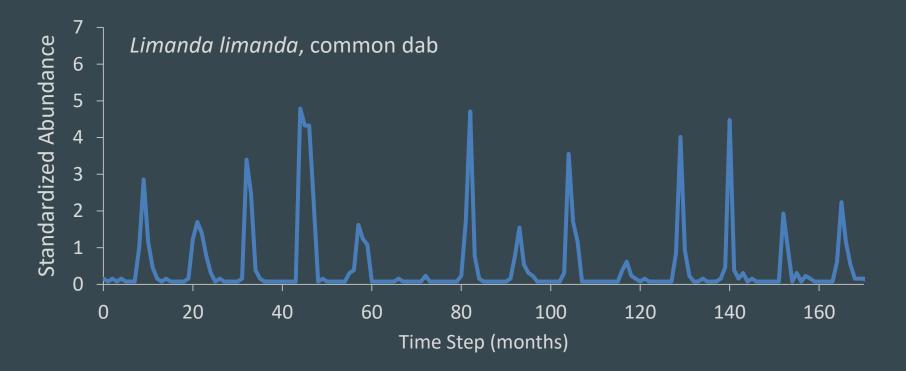
Tanya Rogers¹, Bethany Johnson², Celia Symons³, Stephan Munch^{1,2} ¹NOAA SWFSC, Santa Cruz ²UC Santa Cruz, Applied Mathematics ³UC Irvine, Ecology & Evolutionary Biology

Population fluctuations in nature (historical view)

1. Environmental drivers

- 2. Population dynamics: density dependence, species interactions
 - Stable equilibrium
 - Regular cycles

Irregular fluctuations/cycles must result from environment, be unpredictable



Origins of chaos in ecology

[>]opulation Size

Science

REPORTS

Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and Chaos

Robert M. May¹

Science 15 Nov 1974: Vol. 186, Issue 4164, pp. 645-647 DOI: 10.1126/science.186.4164.645

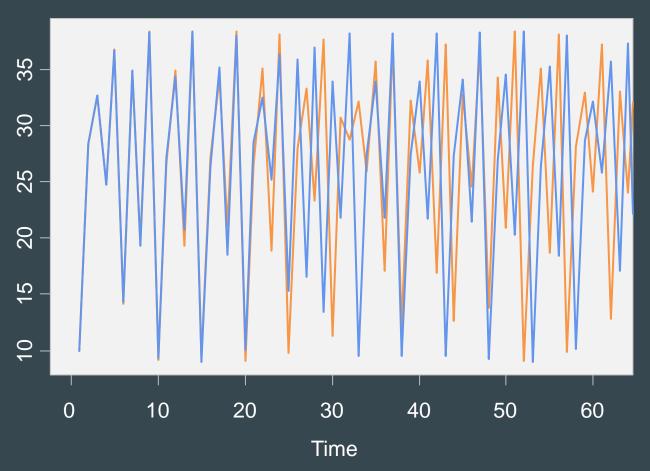
Discrete logistic population model (logistic map)

$$N_{t} = N_{t-1} + N_{t-1}r\left(1 - \frac{N_{t-1}}{K}\right)$$

- Sensitivity to initial conditions
- Bounded, irregular, deterministic oscillations
- No stable equilibria/fixed points
- Short-term predictability, but not long-term (unlike randomness)

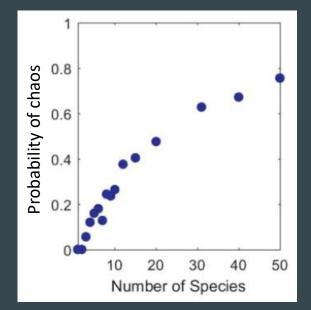
initial Pop. Size = 10 initial Pop. Size = 10.01

Could chaos explain irregular fluctuations in nature?



What do we know about chaos?

- Numerous theoretical and empirical studies have since been done
- Beyond the 1-d logistic map:
 - Chaos is more likely in more complex (higher-dimensional) systems (multiple species, age classes, life histories, populations in space, etc.)
 - Chaos doesn't necessarily depend on (or require high) growth rate
 - Chaos doesn't necessarily result in low pop. sizes (higher extinction risk)
- Chaotic and non-chaotic time series can be impossible to distinguish visually
- Chaos is harder to detect in short, noisy time series



Multi-species Ricker random predator-prey networks

Munch et al. (2019)

Lyapunov exponent (LE)

- Exponential divergence rate, averaged across entire trajectory $(T \rightarrow \infty)$
- LE > 0 indicative of chaos
- Magnitude indicative of forecast horizon (~ 1/LE timesteps)
- There are several different methods for estimating the LE



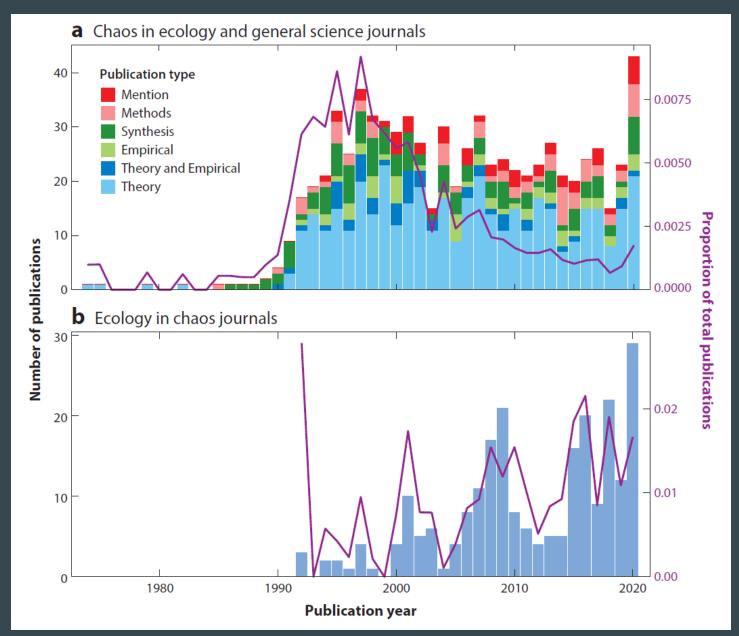
 λ_1 = log dominant eigenvalue of Jacobian matrix

Are ecological dynamics chaotic?

- Most recent global metaanalysis found that only 1 out of 634 ecological time series was chaotic (Sibly et al. 2007)
- Similar conclusions have been drawn by other recent papers (Upadhyay et al. 1998, Snell & Serra 1998, Freckleton & Watkinson 2002, Shelton & Mangel 2011, Salvidio 2011)
- Consensus that chaos in ecology is 'rare'

	Ecology Letters, (2007) 10: 970–976	doi: 10.1111/j.1461-0248.2007.01092.x
LETTER		
	On the stability of popula	tions of mammals, birds,
	fish and insects	
Richard M. Sibly, ^{1,2} * Daniel Barker ³ , Jim Hone ⁴ and Mark		s whether populations of plants and animals remain relatively stable around some steady-
extinction. Our estimate	s of return rates were genera	lly well below the threshold for
haos, <mark>which makes it un</mark>	likely that chaotic dynamics o	ccur in natural populations – on
of ecology's key unansw	ered questions.	
Population Ecology, http:// www.cipe.dk ³ Sir Harold Mitchell Building, School of Biology, University of St Andrews, St Andrews, Fife,	extinction. Our estimates of return rates y	mals may make them more vulnerable to were generally well below the threshold for dynamics occur in natural populations – one
KY16 9TH, UK	Keywords	
⁴ Institute for Applied Ecology, University of Canberra, Canberra ACT 2601, Australia	Chaos, contest competition, GPDD, return	n rate, scramble competition, stability.
*Correspondence: E-mail:		
r.m.sibly@reading.ac.uk	Ecology Letters (2007) 10: 970–976	

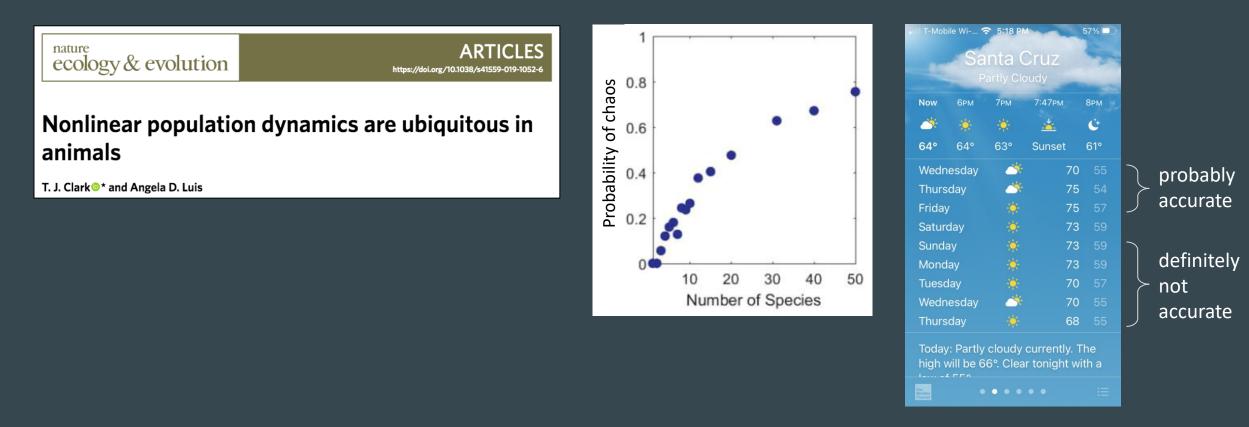
Publications about chaos in ecology



Munch et al. (2022) AREES

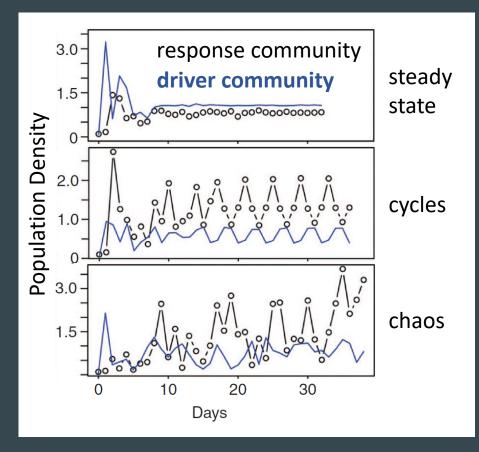
But why should chaos in ecology be rare?

- Nonlinear dynamics are everywhere
- Ecosystems are highly complex and high-dimensional
- Abiotic drivers of ecosystems are themselves chaotic (e.g. the weather)



Experimental and field demonstrations of chaos

Becks & Arndt 2013



Is it just that chaos is impossible to detect in field data if it's there, or...

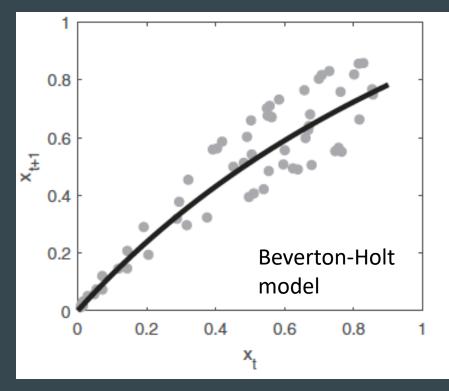
- 3-species microbial communities in chemostat (Becks et al. 2005)
- Flour beetles in lab (Dennis et al. 1997)
- Planktonic community in a mesocosm (Beninca et al. 2008)
- Perennial grasses grown in field (Tilman & Wedin 1991)
- Fennoscandian voles across Europe (Turchin & Ellner 2000)
- Measles dynamics in Africa (Ferrari et al. 2008)
- Rocky intertidal community with intransigent competition (Beninca et al. 2015)

Experimental demonstration of chaos in a microbial food web

Lutz Becks¹*, Frank M. Hilker², Horst Malchow², Klaus Jürgens^{3,4} & Hartmut Arndt¹*

Is it just the methods we're using?

- Most meta-analyses fit 1-d parametric models and infer chaos based parameter estimates $x_{t+1} = f(x_t)$
- 1-d models treat all higher-dimensional dynamics as noise



Data are actually generated from a chaotic 2-d predator-prey system

$$x_{t+1} = \frac{r_x x_t (1 - cy_t)}{b + x_t (1 - cy_t)}$$
$$y_{t+1} = r_y y_t (1 - y_t) + f x_t y_t$$

Deterministic chaos in 2-d looks like stable dynamics with noise in 1-d. Munch et al. (2019)

• Can low-d chaos (e.g. logistic map) explain population fluctuations? No.

Is it just the methods we're using?

 Last meta-analysis to use flexible, higher-dimensional methods was published >25 years ago (Ellner & Turchin 1995)

Evidence for chaos in

- 7 of 31 field time series (23%)
- 3 of 20 experimental time series (15%)

We now have more data and new and improved methods

Vol. 145, No. 3	The American Naturalist	March 1995	
CHAOS IN A NOISY WORLD: NEW METHODS AND EVIDENCE FROM TIME-SERIES ANALYSIS			
St	TEPHEN ELLNER ^{1,*} AND PETER TURCHIN ^{2,†}		

"... we want to stress that our procedure was biased against finding chaos." "Our findings of positive Lyapunov exponents in several data sets, despite the biases in our approach, therefore are a strong indication that ecological systems are capable of chaotic behavior."

Our meta-analysis

- 1. How well do various chaos detection methods work under ecologically realistic conditions (short, noisy data)?
 - Nonparametric, higher-d methods
 - Operate on single time series, substitute lags for unobserved dimensions
- 2. What happens if we apply the best methods to empirical data from a large number of species around the world?

Method

- **1. Direct estimation of LE**
- 2. Jacobian estimation of LE
- 3. Recurrence quantification analysis
- 4. Permutation entropy
- 5. Horizontal visibility algorithm
- 6. Chaos decision tree

(Rosenstein et al. 1993)
(Nychka et al. 1992)
(Webber & Zbilut 1994)
(Bandt & Pompe 2002)
(Luque et al. 2009)
(Toker et al. 2020)

Method

1. Direct estimation of LE

- 2. Jacobian estimation of LE
- **3. Recurrence quantification analysis**

Munch et al. (2022) AREES

- 4. Permutation entropy
- 5. Horizontal visibility algorithm
- 6. Chaos decision tree

(a) Direct LE estimation

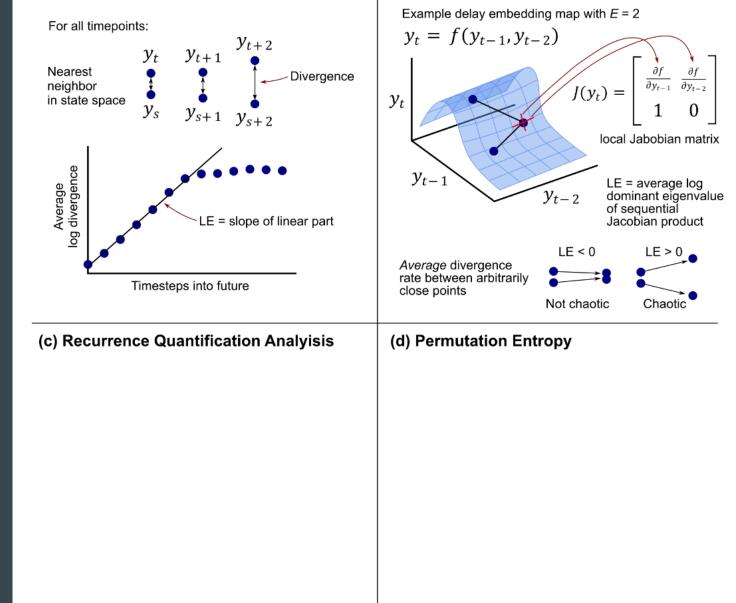
For all timepoints: $y_t y_{t+1} \stackrel{y_{t+2}}{\bullet}$	
Nearest neighbor in state space y_t y_{t+1} Divergence y_s y_{s+1} y_{s+2}	
Bod divergence LE = slope of linear part	
Timesteps into future	
(c) Recurrence Quantification Analyisis	(d) Permutation Entropy
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	

(b) Jacobian LE estimation

Method

- **1. Direct estimation of LE**
- 2. Jacobian estimation of LE
- **3. Recurrence quantification analysis**
- 4. Permutation entropy
- 5. Horizontal visibility algorithm
- 6. Chaos decision tree

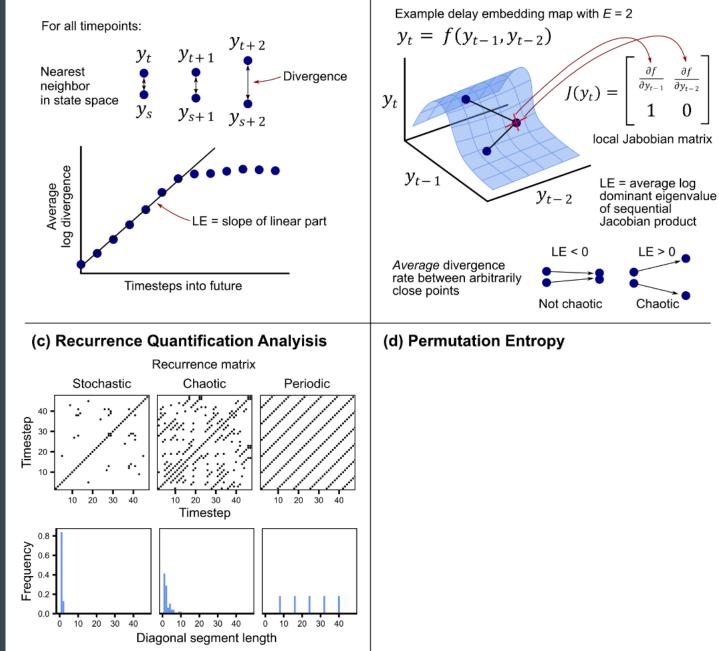
(a) Direct LE estimation



(b) Jacobian LE estimation

Method

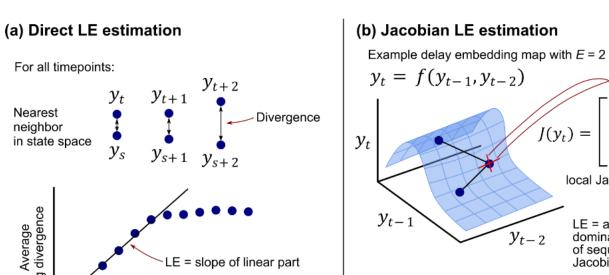
- 1. Direct estimation of LE
- 2. Jacobian estimation of LE
- 3. Recurrence quantification analysis
- 4. Permutation entropy
- 5. Horizontal visibility algorithm
- 6. Chaos decision tree



(b) Jacobian LE estimation

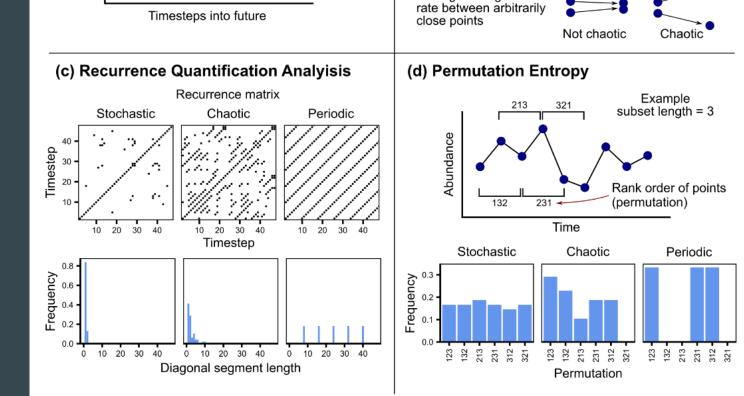
Method

- 1. Direct estimation of LE
- 2. Jacobian estimation of LE
- 3. Recurrence quantification analysis
- 4. Permutation entropy
- 5. Horizontal visibility algorithm
- 6. Chaos decision tree



LE = slope of linear part

g



∂f

 $\overline{\partial y_{t-2}}$

 $\overline{\partial y_{t-1}}$

local Jabobian matrix

LE = average log

Jacobian product

dominant eigenvalue of sequential

LE > 0

 $J(y_t) =$

 y_{t-2}

Average divergence

LE < 0

Simulation testing

Observation Time Series Dynamics Model Noise Length WhiteNoise RedNoise RandomWalkTrend **Stochastic** RandomWalk Cyclostationary BlueNoise AR1 25 SineWave 1% 50 Ricker 10% PredatorPrey Periodic 75 Logistic8cyc 20% Logistic 100 HostParPar 30% Henon 250 Ricker PredatorPrey Poincare Chaotic Logistic Ikeda HostParPar CubicMap

Training/Test dataset

•	100	reps	for	each	com	bination
---	-----	------	-----	------	-----	----------

 37 different stochastic, periodic, and chaotic models total

Validation dataset #1

Dynamics	Model	Observation Noise	Time Series Length
Stochastic	VioletNoise SinForcedAR1 PinkNoise AR2	1%	25 50 75 100
Periodic	Tinkerbell MouseMap Competition	10% 20%	
Chaotic	Tinkerbell MouseMap Competition	30%	250

Validation dataset #2

Dynamics	Model	Observation Noise	Process Noise	Time Series Length
Periodic	SeasonalPredPrey NPZ LPA	1% 10%	0% 10%	400
Chaotic	SeasonalPredPrey NPZ LPA	20% 30%	20% 30%	100

Simulation results

Method	False negative rate	False positive rate
1. Direct estimation of LE	0.08	0.66
2. Jacobian estimation of LE	0.29	0.04
3. Recurrence quantification analysis	0.37	0.13
4. Permutation entropy	0.26	0.18
5. Horizontal visibility algorithm	0.62	0.10
6. Chaos decision tree	0.73	0.02

(Pooled across all test and validation datasets)

- 3 methods were effective classifiers
- Performance similar on test and validation datasets
- Observation and process noise increase false negative rate, but not false positive rate
- Jacobian LE had best performance at short time series lengths

Empirical data

- 172 time series from the Global Population Dynamics Database (GPDD)
 - Field-collected data
 - 138 different taxa
 - 30 to 197 timesteps
 - High-quality subset of the GPDD:
 - length ≥30, zeros <60%, missing values <22%, reliability score ≥2

Chaos prevalence in the GPDD

- At least 1/3 of time series were chaotic ullet
- Chaos prevalence varied by taxonomic ulletgroup



Chaos detection method	GPDD % chaotic (number of series)	
1. Jacobian LE	33% (58)	
2. Recurrence quantification analysis	42% (74)	
3. Permutation entropy	51% (89)	

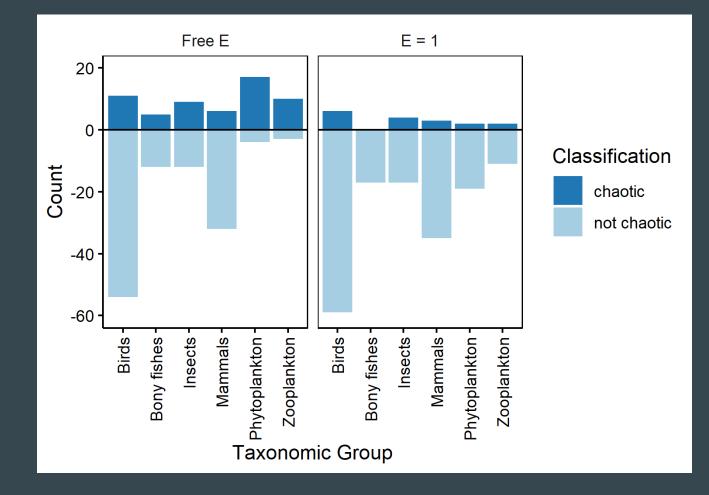
16%

Mammals

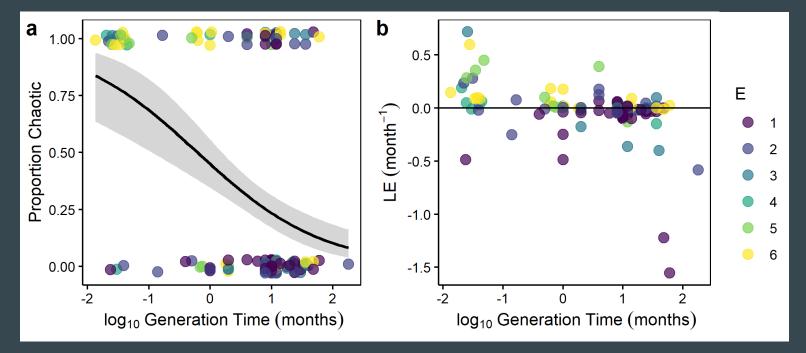
38

Restricted dimensionality reduces ability to detect chaos

- Constraining model used by Jacobian LE to E = 1 (1-d nonparametric model) reduces apparent chaos prevalence to < 10%
- Constraining to 1-d parametric models reduces to < 6%



Chaos more prevalent in shorter-lived species

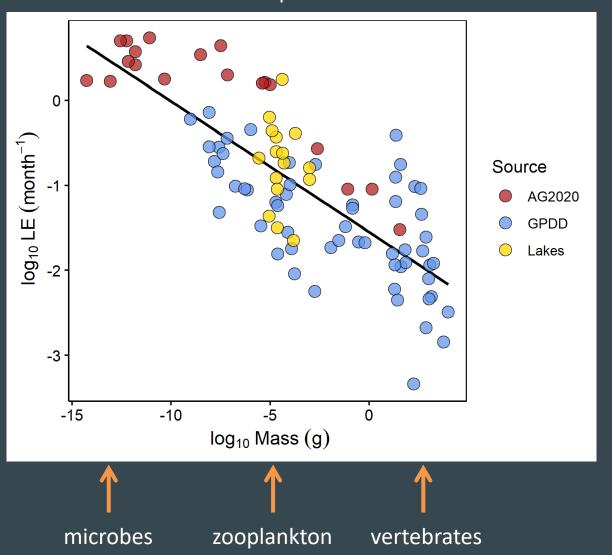


Possibly because long-lived species:

- may be better insulated from chaotic environmental drivers
- have lower average mortality rates, hence potentially weaker interactions with other species (per unit time, but not generation)
- have fewer generations sampled (detection depends on time series length relative to intrinsic time scale)

Positive LEs scale with body size

- Combined results with independently estimated LEs from laboratory and field studies (Anderson & Gilooly 2020)
- Consistent relationship with scaling of about -1/6
- Additional values from lake zooplankton are consistent with this relationship



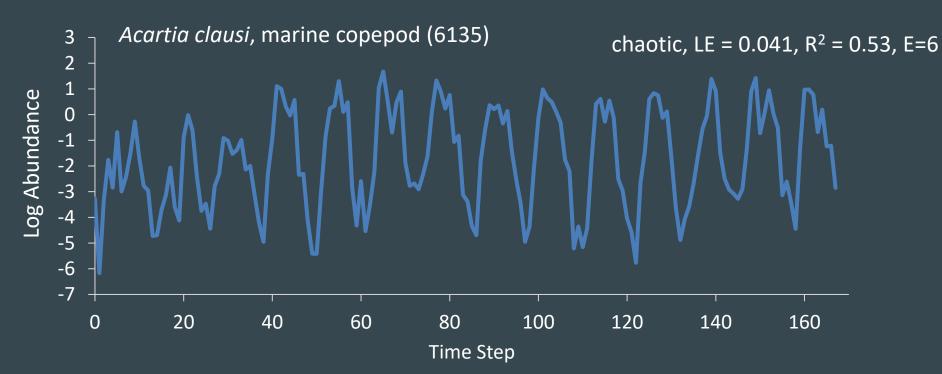
slope = -0.16

But is it *really* chaos? Couldn't it just be...

- Noise?
 - Noise increases false negative rate, not false positive
 - Chaotic series are more variable, but not necessarily less predictable
 - Consistent mass scaling with low-noise laboratory studies
- Nonstationarity (e.g. exponential growth)?
 - Median growth rates (around 0) do not differ between chaotic and not chaotic series
 - Most chaotic series do not have a monotonic trend
 - Only few cases of exp. growth misclassified as chaos

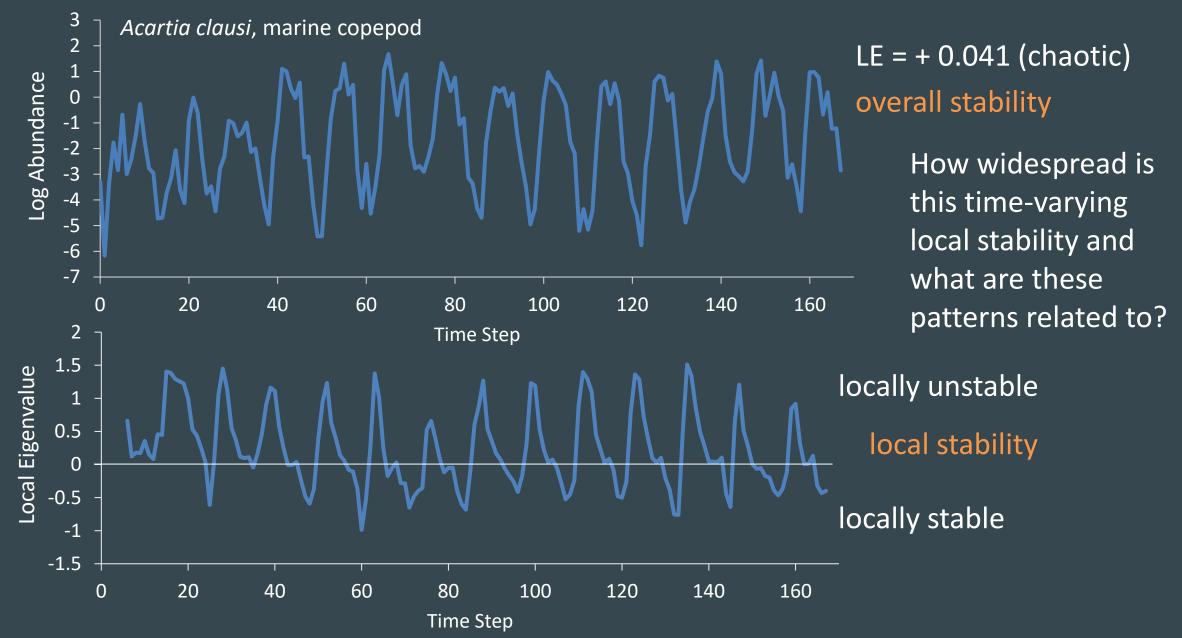
But is it *really* chaos? Couldn't it just be...

- Chaotic advection of marine plankton?
 - 47% of additional lake zooplankton time series were chaotic
 - Time series show persistent seasonal peaks/troughs that are not likely due to advection
 - Consistent mass scaling unlikely to be due to advection



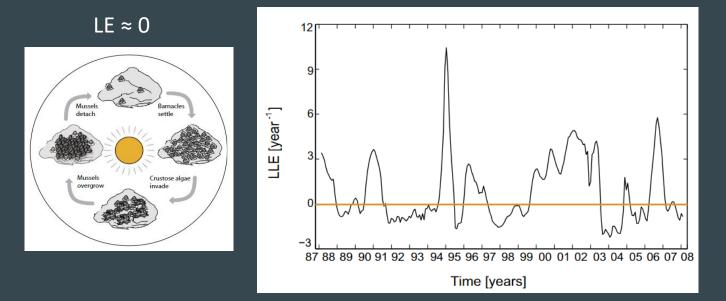
Part 2: Intermittent instability

Global vs. local stability

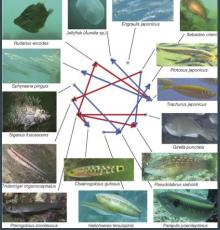


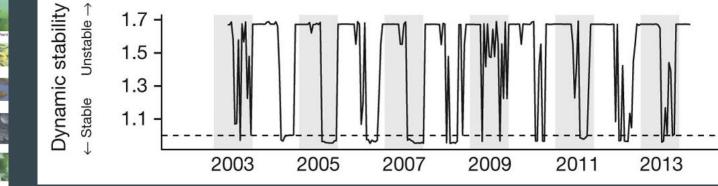
Global vs. local stability

Beninca et al. 2015 New Zealand rocky shore



Ushio et al. 2018 Japanese fish community

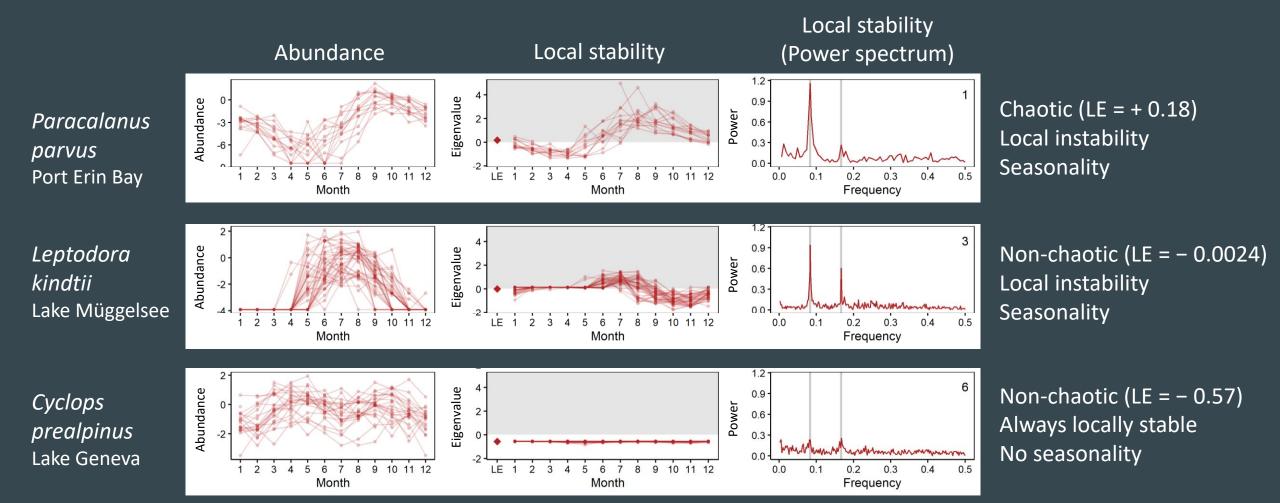




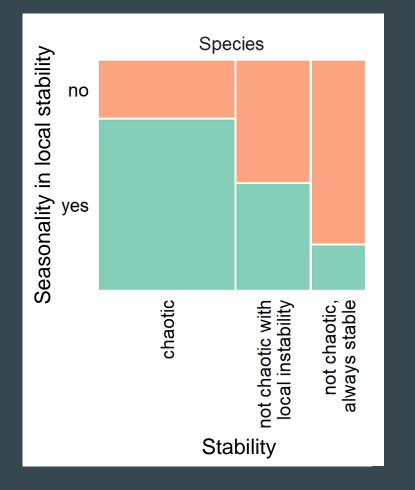
Research Approach

- Assembled monthly plankton time series data from 17 lakes and 4 marine sites (154 species-level time series)
- Used Jacobian method to compute LE and local stability
- We then assessed:
 - prevalence of chaos and seasonal fluctuations in local stability
 - relationship between local stability and predictability
 - across-site variation in LEs and seasonality of local stability
 - how results are affected by level of data aggregation
 - species
 - functional group
 - trophic level (total phytoplankton, total zooplankton)

Local stability sometimes oscillates

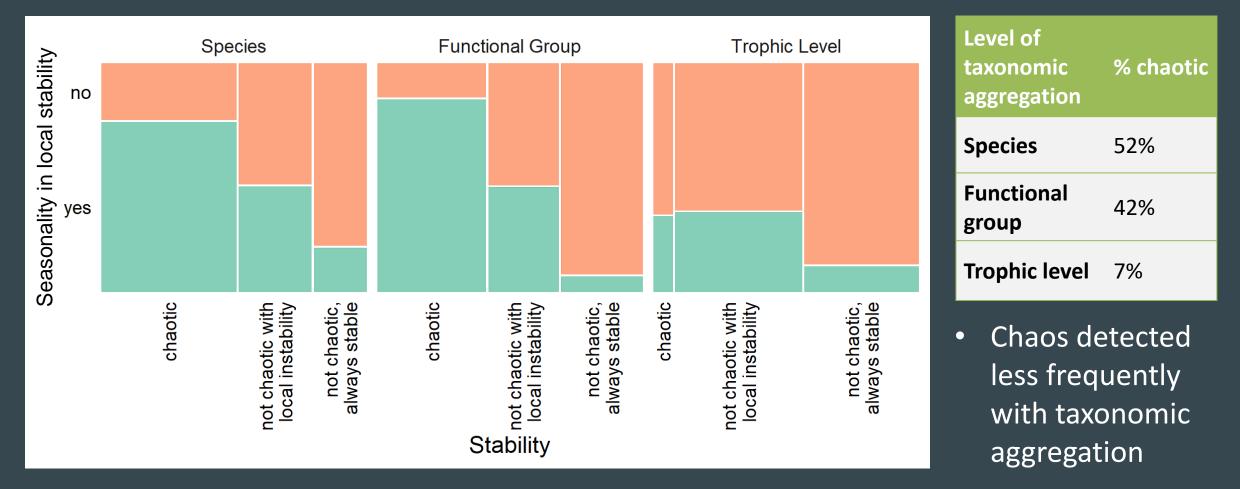


Summary of stability patterns



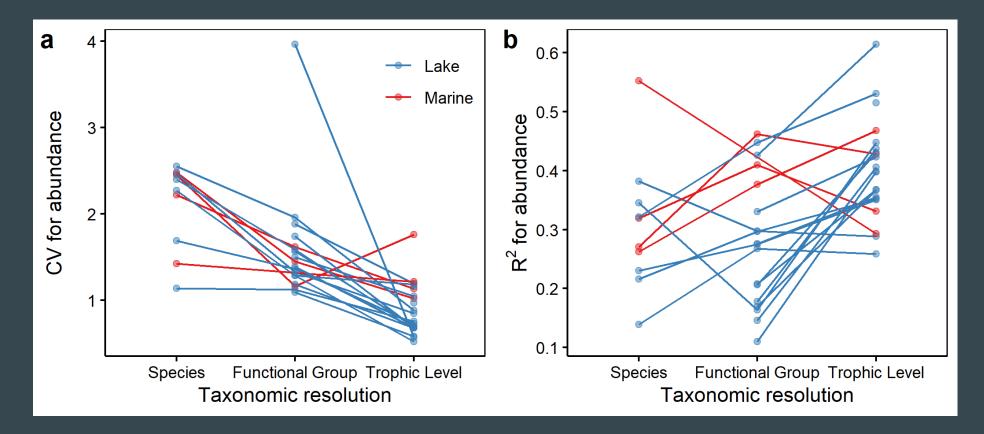
• Seasonal oscillations in local stability common in chaotic series, also seen in and nonchaotic (but locally unstable) series

Summary of stability patterns



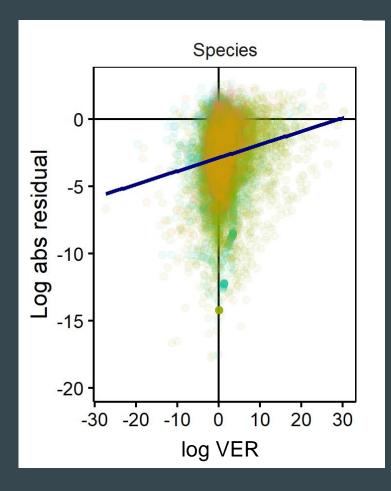
• Seasonal oscillations in local stability common in chaotic series, also seen in and nonchaotic (but locally unstable) series

Aggregates less variable and more predictable



- Increased predictability not expected if species just fluctuating independently
- Suggests species fluctuate out of phase due to dynamics (e.g. complementarity)
- Aggregation smooths over dynamics

Local instability related to step-ahead prediction error

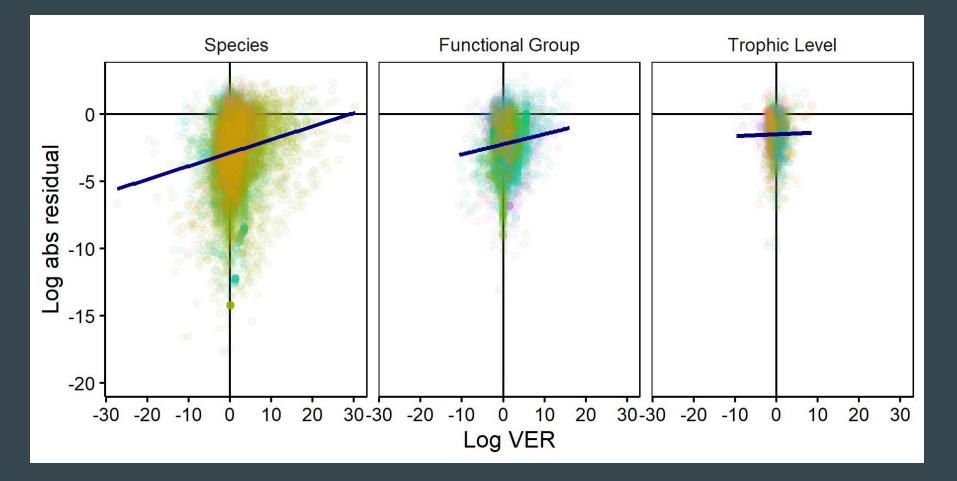


• Suggests periods of higher/lower <u>forecastability throughout the year</u>

VER = variance expansion ratio:

a less conservative measure of local stability, $tr(J(x_t)J(x_t)^T)$

Local instability related to step-ahead prediction error

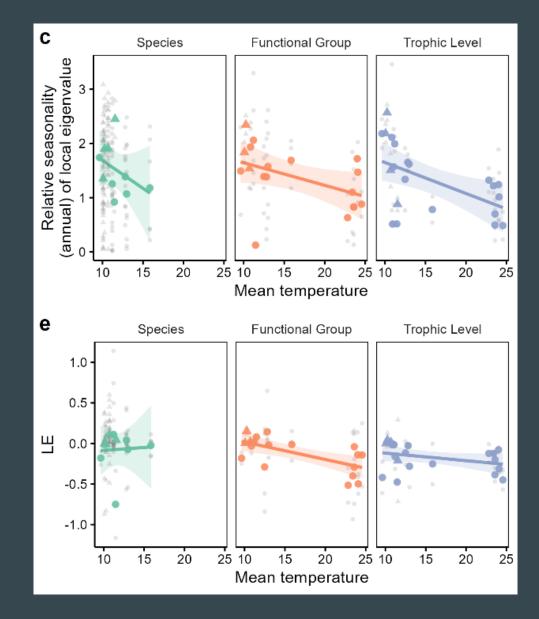


VER = variance expansion ratio:

a less conservative measure of local stability, $tr(J(x_t)J(x_t)^T)$

Across-site variation in stability

- Sites with lower mean temperature (higher latitude) had:
 - higher relative seasonality in local eigenvalues
 - higher LEs
- Only at coarser taxonomic resolution



Conclusions / Take Aways

- Ecosystems are not 1-d
 - 1-d population models can mischaracterize dynamics, treating complexity as noise
 - May (1976): 1-d models "do great violence to reality"
- Chaos is not 'rare'
 - Birds and mammals (least chaotic taxa) were 59% of time series analyzed, but are <1% of species on earth; chaos may be considerably more common than ¹/₃
- Local stability can vary over time
- Implications for management (esp. short-lived species)
 - Short-term forecasting may be feasible, but precise long-term prediction impossible
 - Prediction may be more feasible for taxonomic aggregates
 - Prediction accuracy, sensitivity to change, management efficacy may be greater at certain times of year
 - Re-think use of linear statistical models, 1-d population models, steady-state management policies is this the best we can do?
 - Perhaps avoid defining objectives in terms of equilibrium conditions, consider index-based management
- Opportunity to use increasing data and modern algorithms to better characterize and understand complex, non-equilibrium, and high-dimensional ecological dynamics

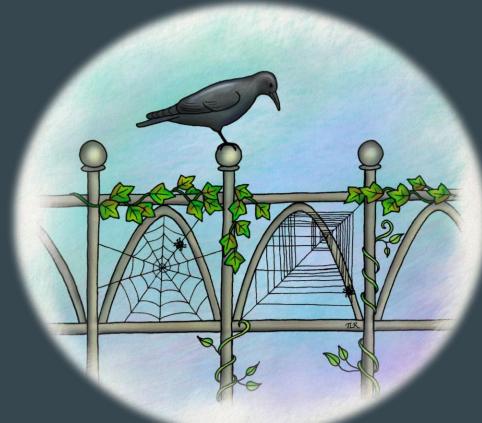
Acknowledgements

- The many collectors and sources of long-term data
- The Munch Lab
- S. Ellner, S. Salinas, S. Newkirk, A. Hein, N. Lustenhouwer, A. M. Kilpatrick, and M. O'Farrell for comments and suggestions
- Funding:
 - NOAA Office of Science and Technology
 - NOAA High Performance Computing and Communications
 - SeaGrant number NA19OAR4170353
 - Lenfest Oceans Program

Rogers et al. (2022) Chaos is not rare in natural ecosystems. *Nature Ecology & Evolution*

Rogers et al. (2023) Intermittent instability is widespread in plankton communities. *Ecology Letters*

Munch, Rogers, et al. (2022) Rethinking the prevalence and relevance of chaos in ecology. *Annual Review of Ecology, Evolution, and Systematics*



Thanks for your attention