Biodiversity and information theory

William Godsoe

William.godsoe@Lincoln.ac.nz

@GodsoeWilliam (mostly on mastodon)

Lincoln University New Zealand

Diversity is important

Ecosystem function (resource capture, biomass production, decomposition, nutrient recycling)

Biological diversity (variation in genes, species, functional traits)

Cardinale et al. (2012) Science

Changes in diversity are hard to predict

Trends in Ecology & Evolution

Review

How Should Beta-Dive Inform Biodiversity Conservation?

Jacob B. Socolar, 1,* James J. Gilroy, 2 William E David P. Edwards 4,*

To design robust protected area networks, accurate losses, or understand the processes that maintain speci vation science must consider the organization of biodivi tral is beta-diversity – the component of regional divers

REVIEW SUMMARY

CLIMATE CHANGE

Improving the forecast for biodiversity under climate change

M. C. Urban,^{*} G. Bocedi, A. P. Hendry, J.-B. Mihoub, G. Pe'er, A. Singer, J. R. Bridle, L. G. Crozier, L. De Meester, W. Godsoe, A. Gonzalez, J. J. Hellmann, R. D. Holt, A. Huth, K. Johst, C. B. Krug, P. W. Leadley, S. C. F. Palmer, J. H. Pantel, A. Schmitz, P. A. Zollner, J. M. J. Travis

Statistics Dynamic models $-\sum p_i log(p_i)$ $-\sum p_i log(p_i)$ Biodiversity $-\sum p_i log(p_i)$

Outline

- Biodiversity obscures the mechanisms ecologists tend to study
- Mechanisms that change species' rarity change biodiversity
- Contemporary changes reflect these mechanisms

Forum

Species interactions and diversity: a unified framework using Hill numbers

William Godsoe, Rua Murray and Ryosuke Iritani

W. Godsoe (https://orcid.org/0000-0003-1697-6916) \square (william.godsoe@lincoln.ac.nz), Dept of Pest Managament and Conservation, Lincoln Univ., Lincoln, New Zealand. – R. Murray, School of Mathematics and Statistics, Univ. of Canterbury, Christchurch, New Zealand. – R. Iritani, RIKEN Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS), Wako, Japan.

Part 1: Biodiversity obscures the mechanisms ecologists tend to study

- Biotic interactions and diversity have different units
- Graphical methods can be used to link the units
- These show how different biotic interactions can have identical effects on diversity

Community ecology has been concerned with biotic interactions

Species 1 harmed Species 1 benefits

Biotic interactions change absolute abundances

$$\frac{1}{n_i} \frac{dn_i}{dt} = \underbrace{r_i - f_i(n_i)}_{intraspecific} + \underbrace{\sum_k g_{ij}(n_i, n_j)}_{biotic}_{interactions}$$

Diversity summarizes information on relative abundances

 $\sum_{i} p_i (-log(p_i))$

Shannon entropy

Hill numbers

Diversity misses changes in abundance

Diversity misses changes in abundance

Diversity misses changes in abundance

Phase portraits tend to present absolute abundances

We can fix this

The paper outlines the math

Different species interactions can produce the same diversity change

Different species interactions can produce the same diversity change

Ayala et al. 1973

Different species interactions can produce the same diversity change

When it comes to diversity, we can learn from (old) twitter

wint @dril · Jun 2, 2014

the wise man bowed his head solemnly and spoke: "theres actually zero difference between good & bad things. you

. . .

Q 175 1, 28.1K ♡ 57.6K 1

Summary part I

- Biotic interactions change absolute abundances but diversity depends on relative abundances
- Phase portraits can be modified to link biotic interactions and diversity
- These methods make clear that many biotic interactions can produce the same changes in diversity

Part II: Mechanisms that change species' rarity change biodiversity

Theoretical Ecology https://doi.org/10.1007/s12080-020-00478-3

ORIGINAL PAPER

Selection and biodiversity change

William Godsoe¹ • Katherine E. Eisen² • Daniel Stanton³ • Katherine M. Sirianni⁴

Received: 9 February 2020 / Accepted: 29 July 2020 © Springer Nature B.V. 2020

Individuals and biodiversity

 $\sum_{i} p_i \left(-log(p_i)\right)$

Each individual is assigned a rarity score

 $\sum_{i} p_i \left(-log(p_i)\right)$

It helps me to picture these rarity scores

 $\sum_{i} p_{i} \underbrace{\left(-log(p_{i})\right)}_{rarity}$

Overall diversity is an average of these scores

 $\sum_{i} p_{i} \underbrace{\left(-log(p_{i})\right)}_{rarity}$

I'll call these rarity scores z

Change in diversity

 $\frac{d}{dt}(\sum_i p_i z_i)$

Change in diversity

$\frac{d}{dt}(\sum_{i} p_{i} z_{i}) = \text{selection} + \text{transmission}$

Analogous to the Price equation in evolutionary theory

- Selection describes changes in relative abundances
- Transmission describes unintuitive changes in diversity, often due to species replacements

Selection and transmission can cancel

Selection and transmission can cancel

The mechanisms interact in nature

Two bouts of selection for *Brachionus rubens*

Shannon Weiner diversity

In one period rarity changes mask selection

New rules for diversity change

- Diversity summarizes individual rarity scores
- Selection occurs when rare species increase in relative abundance
- Transmission describes unintuitive shifts in rarity

Part III: measuring diversity change at large spatial scales

VOL. 199, NO. 4 THE AMERICAN NATURALIST APRIL 2022

Disentangling Niche Theory and Beta Diversity Change

William Godsoe,^{1,*} Peter J. Bellingham,² and Elena Moltchanova³

1. BioProtection Research Centre, Lincoln University, Lincoln, New Zealand; 2. Manaaki Whenua–Landcare Research, Lincoln, New Zealand; and School of Biological Sciences, University of Auckland, Auckland, New Zealand; 3. School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

Submitted March 31, 2021; Accepted October 14, 2021; Electronically published February 18, 2022

Online enhancements: appendixes, R code. Dryad data: https://doi.org/10.5061/dryad.sxksn033s.

Diversity is organized spatially

Beta diversity: dissimilarity among communities

Past

Spatial patterns of diversity change over time

Present

Past

Biotic homogenization: decrease in beta diversity

Present

In this section I will

- Identify individual contributions to beta diversity
- Use this to define mechanisms shaping diversity
- Measure these contributions in nature

Diversity component	Individual's contribution	Visualized
Overall diversity (gamma)	$-log(p_i)$	
Diversity within communities (alpha)		
Diversity among communities (beta)		

Diversity component	Individual's contribution	Visualized
Overall diversity (gamma)	$-log(p_i)$	
Diversity within communities (alpha)	$-log(p_{i j})$	
Diversity among communities (beta)		

Diversity component	Individual's contribution	Visualized
Overall diversity (gamma)	$-log(p_i)$	
Diversity within communities (alpha)	$-log(p_{i j})$	
Diversity among communities (beta)	$z_{i\beta} = log(p_i) - log(p_{i j})$	

Selection on $z_{i\beta}$

Past

Present

Transmission on $z_{i\beta}$

Past

Blue mountains of Jamaica

Nutrient poor Mor site

Tanner 1977 plots established to compare nutrient rich and nutrient poor forests

Long-term diversity change

Shannon entropy for four sites in the blue mountains

(Tanner and Bellingham 2006)

rarity of individuals among sites

Biotic homogenization post hurricane?

Conclusions part III

- Individuals make contributions to diversity at large spatial scales
- Mechanisms such as selection, transmission and immigration can be measured
- In the blue mountains, these mechanisms were indifferent to hurricane damage

Overall summary

- Biotic interactions have unintuitive effects on diversity
- Tracking individual contributions helps us to recognize the mechanisms of diversity change
- These mechanisms can be generalized across spatial scales

Thanks to

• Te Pūnaha Matatini and BioProtection Research centres of research excellence

Example similar competitors

Example from a dynamic model

